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A B S T R A C T

Black carbon (BC) is a descriptive term that refers to light-absorbing particulate matter (PM) produced by in-
complete combustion and is often used as a surrogate for traffic-related air pollution. Exposure to BC has been
linked to adverse health effects. Penetration of ambient BC is typically the primary source of indoor BC in the
developed world. Other sources of indoor BC include biomass and kerosene stoves, lit candles, and charring food
during cooking. Home characteristics can influence the levels of indoor BC. As people spend most of their time
indoors, human exposure to BC can be associated to a large extent with indoor environments. At the same time,
due to the cost of environmental monitoring, it is often not feasible to directly measure BC inside multiple
individual homes in large-scale population-based studies. Thus, a predictive model for indoor BC is needed to
support risk assessment in public health. In this study, home characteristics and occupant activities that po-
tentially modify indoor levels of BC were documented in 23 homes, and indoor and outdoor BC concentrations
were measured twice. The homes were located in the Cincinnati-Kentucky-Indiana tristate region and mea-
surements occurred from September 2015 through August 2017. A linear mixed-effect model was developed to
predict BC concentration in residential environments. The measured outdoor BC concentrations and the docu-
mented home characteristics were utilized as predictors of indoor BC concentrations. After the model was de-
veloped, a leave-one-out cross-validation algorithm was deployed to assess the predictive accuracy of the output.
The following home characteristics and occupant activities significantly modified the concentration of indoor
BC: outdoor BC, lit candles and electrostatic or high efficiency particulate air (HEPA) filters in heating, venti-
lation and air conditioning (HVAC) systems. Predicted indoor BC concentrations explained 78% of the variability
in the measured indoor BC concentrations. The data show that outdoor BC combined with home characteristics
can be used to predict indoor BC levels with reasonable accuracy.

1. Introduction

Exposure to traffic-related air pollution has been associated with
adverse health effects (Katsoulis et al., 2014; Bowatte et al., 2015).
Black carbon (BC) is an example of a traffic-related air pollutant and is
used as a surrogate of traffic-related particles (Janssen et al., 1997;
Power et al., 2011). During the cold season (September 1 – March 31),
exposure to BC is associated with cough among children (Patel et al.,
2009). Black carbon is also linked to the prevalence of bronchitis and
asthma in children (Kim et al., 2004), and respiratory hospitalizations
among the elderly (Bell et al., 2009).

Black carbon is a descriptive term for light-absorbing particles that

represent a continuum of incomplete combustion residues ranging from
larger charred materials that retain structural information of parent
materials to highly condensed refractory soot particles that are pro-
duced from incomplete combustion (Yan et al., 2011). Soot particles
include organic carbon and black carbon particles derived from com-
bustion (Petzold et al., 2013). They are nanometer to submicrometer in
aerodynamic diameter (D'Anna, 2009), and can be emitted from the
exhausts of internal combustion engines (World Health Organization
(WHO), 2012). Chars are large particles that do not travel far. Conse-
quently, in most filter-based measurements of airborne particulate
matter (PM), BC mainly consists of soot particles that usually contain
other atoms and attached organics such as polycyclic aromatic

https://doi.org/10.1016/j.atmosenv.2018.12.053
Received 15 August 2018; Received in revised form 16 December 2018; Accepted 19 December 2018

∗ Corresponding author.
E-mail address: Tiina.Reponen@uc.edu (T. Reponen).

Atmospheric Environment 201 (2019) 223–230

Available online 09 January 2019
1352-2310/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2018.12.053
https://doi.org/10.1016/j.atmosenv.2018.12.053
mailto:Tiina.Reponen@uc.edu
https://doi.org/10.1016/j.atmosenv.2018.12.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2018.12.053&domain=pdf


hydrocarbons (Yan et al., 2011). Soot is determined by optical methods
and chemical-thermal methods. Soot determined via optical methods is
referred to as black carbon. The term elemental carbon is used when
soot is determined by chemical-thermal methods that measure the
amount of CO2 evolved. There is a high correlation (r= 0.95) of soot
results obtained with optical methods and chemical-thermal methods
(Kinney et al., 2000). Due to this high correlation, the terms black
carbon and elemental carbon are often used interchangeably (Han
et al., 2010). Using light absorption of colored particles at one or more
wave lengths, optical absorption techniques have been utilized to dif-
ferentiate black carbon from other colored components such as particles
from cigarette smoke (Yan et al., 2011; Lawless et al., 2004). Majority
of colored components of PM, such as cigarette smoke, are colored
organic carbon, and not black carbon, as they make sampling filters
yellow-brown and not black. It is estimated that< 1% of PM emitted
from burning cigarettes have light-absorbing properties of black carbon
(National Institute for Occupational Safety and Health (NIOSH), 1995).

Black carbon (BC) can be emitted from any incomplete combustion
source. For indoor environments, examples of BC sources include
lighting or extinguishing candles, using kerosene lamps, charring food,
and cooking or heating with solid fuels (World Health Organization
(WHO), 2012; LaRosa et al., 2002; Habre et al., 2014). Cleaning ac-
tivities, such as vacuuming carpets, can cause resuspension of indoor
particles with aerodynamic diameter≤ 10 μm, which results in in-
creased indoor aerosol concentrations (Corsi et al., 2008). In urban
settings, exhaust emissions from traffic and especially older diesel en-
gines are one of the major contributors to ambient BC (World Health
Organization (WHO), 2012). Thus, the distance of a home to a road
with high vehicular traffic may modify indoor BC concentrations. Other
factors are also associated with indoor BC levels. Quantifying the fac-
tors which modify indoor BC should enhance any predictive model for
indoor BC concentrations. Modeling residential indoor BC concentra-
tions is useful for estimating average exposure, given that people ty-
pically spend 64–66% of their time indoors at their residences
(Buonanno et al., 2013; Brasche and Bischof, 2005; Leech et al., 2002).
In addition, subgroups such as infants, the elderly, stay-at-home parents
and people who work from home spend much higher fractions of their
time at their residences. Modeling residential indoor BC concentrations
would facilitate risk assessment in public health when population ex-
posure to BC is estimated.

As BC refers to light-absorbing particles, any indoor air quality
(IAQ) intervention that aims at reducing indoor particles, may also
reduce indoor BC. Examples of IAQ interventions include equipping the
heating, ventilation and air conditioning (HVAC) systems with efficient
air filters (Sadiktsis et al., 2016), operating kitchen exhaust hoods with
recirculated air through a filter or outdoor exhaust (Lunden et al., 2015;
Rim et al., 2012). Indoor-outdoor air exchange modifies indoor pollu-
tant levels (Sexton et al., 1983). The air exchange rate is affected by
infiltration and exfiltration via unintentional leaks in a building en-
velope, open windows or doors and mechanical ventilation (Ng et al.,
2015). Pressurized fan tests are used to measure building air tightness
(ASTM, 2010), an indicator of air infiltration via unintentional leaks in
a building envelope. Furthermore, air leakage attributable to different
building components can be estimated (American Society of Heating,
2017).

A model to accurately predict indoor BC can be developed based on
the information about the above-listed home characteristics. After such
a predictive model is developed, its performance should be assessed
through validation methods, e.g., cross-validation to ensure the accu-
racy of the model output (Arlot and Celisse, 2010). There have been
attempts to establish relationships between specific environmental
characteristics and the carbon particle levels in residential settings.
Baxter et al. used home characteristics, occupant activities and traffic
indicators to predict indoor elemental carbon determined by PM2.5

filter reflectance analysis (Baxter et al., 2007a, 2007b). Because the
method of analysis used by Baxter et al. is an optical method, the

measured particles can be regarded as black carbon.
Baxter et al. developed two models, in which factors such as an

increase in ambient BC and the close proximity of a home with windows
kept open to a road with high truck counts were both significantly as-
sociated with an increase in indoor BC. (Baxter et al., 2007a, 2007b)
However, some home characteristics and occupant activities that can
potentially modify indoor PM, e.g., electrostatic/HEPA HVAC filters
were not incorporated into the models developed by Baxter et al.
Therefore, the need remains for an advanced predictive model in-
corporating real-life multiple housing characteristics that can poten-
tially modify indoor BC concentration. The goal of this study was to
develop such a predictive model for indoor BC. We utilized multiple
housing characteristics as covariates and assessed the predictive per-
formance of the model with a leave-one-out cross-validation method.

2. Methods

2.1. Study overview

The study was conducted in 23 residential environments (single-
family and apartment buildings) in the Cincinnati-Kentucky-Indiana
tristate region (Fig. S1) from September 2015 through August 2017.
The BC levels were measured indoors and outdoors, and home char-
acteristics specific to each dwelling were documented. The homes in
this study belonged to a cohort of subjects from another ongoing study
(Cox et al., 2018). The ongoing study was focused on the efficiency of
air cleaners in removing indoor particles, but only baseline measure-
ments (before the deployment of air cleaners) were included in this
study. All homes were located in neighborhoods with ≥0.33 μg/m3

outdoor elemental carbon attributable to traffic, as determined in a
previous study (Ryan et al., 2008). The study received Institution Re-
view Board (IRB) approval from the University of Cincinnati IRB.

2.2. Environmental monitoring

Samples of airborne fine particulate matter (PM2.5) were collected
simultaneously from inside and outside of each residence over 48 h
using single-stage Personal Modular Impactors (SKC, Inc., Eighty Four,
PA) equipped with 37-mm Teflon filters. Measurements were repeated
twice in each home. Indoor samples were collected in a bedroom and
outdoor samples in the immediate vicinity (backyard or in front) of the
home. Sampling pumps were calibrated to a flow rate of 3 L/min using a
mass flow meter (TSI Inc., Shoreview, MN). Measurements were re-
peated twice in each home with a 2-month gap between the two
measurements. After gravimetric determination of the PM2.5, the filter
samples were analyzed for BC by optical absorption technique (Yan
et al., 2011), which has a published limit of detection (LOD) of 1.4 ng/
mm2 of the filter (equivalent to an air concentration of 0.12 μg/m3 in
this study). Media and field blanks were collected in parallel at a rate
equal to 10% of all filter samples. The mean concentration of BC in the
blank samples was 0.25 ng/mm2 of the filter (equivalent to an air
concentration of 0.07 μg/m3 in this study). This value was subtracted
from the BC measured on the real samples.

2.3. Documenting housing characteristics

Questionnaires on the housing conditions and appliances were ad-
ministered to the participants of the study. In addition, the homes were
inspected during each visit, and the questionnaire data were verified
and documented. Information from the questionnaires contained the
following characteristics:

• Exhaust hood in the kitchen – yes or no.
• Presence of electrostatic filter or high-efficiency particulate air
(HEPA) filter in the HVAC system – yes or no.

• Lit candles during the sampling period – yes or no.
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• Use of fireplace during the sampling period – yes or no.
• At least one open window during the sampling period – yes or no.
• Cleaning (vacuuming or sweeping or dusting) during the sampling
period – yes or no.

Other housing characteristics assessed by the study team included
the distance of the home to the nearest state highway or federal in-
terstate (major road) and the annual average rate of air infiltration in
the home. The distance of the homes to the nearest major road was
calculated with a geographical information system (ArcGIS 9.0,
Environmental Systems Research Institute, Inc., Redlands, CA) (Ryan
et al., 2008). Data on the geographical location of the major roads were
obtained from the Ohio Department of Transportation (2004) and the
Kentucky Transportation Cabinet (2006) (Ryan et al., 2008). The an-
nual average rate of air infiltration via unintentional leaks in the home
was determined from measurements of a blower door system in ac-
cordance with the ASTM standard for fan pressurization tests (ASTM,
2010). The blower door system includes a fan, which is positioned at an
exterior door in a building. Before the start of the blower door mea-
surement, all exterior doors and windows in a home were shut, and the
interior doors were opened. A baseline building pressure was measured
with the blower door system, and the blower door fan was utilized to
induce pressure differences between indoor and outdoor of 10–60 Pa
with 5 Pa increments (ASTM, 2010). Building air tightness was derived
from the blower door system by recording the airflow needed to es-
tablish the above-indicated pressure differences (10–60 Pa), and a
summary of the test was reported through a proprietary software
(TECTITE) (The Energy Conservatory, 2014). The software was pro-
grammed to calculate an annual average rate of natural air infiltration
based on the American Society of Heating, Refrigerating and Air-Con-
ditioning (ASHRAE) standard (American Society of Heating, 1993).
Results from the blower door system give an estimation of the number
of air changes per hour through unintentional leaks such as cracks and
holes in the building envelope.

2.4. Statistical analysis

In the current study, each home was assigned an identification
number. A linear mixed-effect model was used for predicting indoor BC.
Outdoor measured BC concentrations and documented housing char-
acteristics were assigned as fixed effects, and home identification
numbers were treated as random effects. Statistical analyses were done
with R studio (RStudio, 2016). To assess the effect of housing char-
acteristics and outdoor BC concentration on indoor BC, the predictive
model was developed in three stages. First, an all subsets regression
analysis was conducted using lowest Bayesian information criterion
(BIC) for model selection. Second, indoor sources of BC and housing
characteristics that represented the infiltration of BC, but were not in-
cluded in the model obtained from the all subset regression analysis
were added one at a time. This was done because all the documented
home characteristics in this study were potential modifiers of indoor BC
and BIC is designed to penalize predictor variables as the sample size
increases (Vrieze, 2012). Third, each time a new independent variable
was added to the model obtained from the All Subset Regression ana-
lysis, the predictive accuracy of the model was assessed with a leave-
one-out cross-validation method. The version of the model that yielded
the highest out-of-sample R2 and lowest root mean squared error
(RMSE) was selected as the final model for the prediction.

The method for utilizing leave-one-out cross-validation has been
reviewed by Arlot et al. (Arlot and Celisse, 2010). In summary, one
observation from the dataset used to develop the predictive model was
removed, and the predictive model was rebuilt again. Regression esti-
mates of this rebuilt model were used to predict the indoor con-
centration of BC in the observation that was removed. The removed
observation was then returned to the dataset, and another observation
was removed, after which the predictive model was rebuilt again. Next,

the indoor concentration of BC in the newly removed data point was
predicted with the regression estimates of the new predictive model.
This process was done 45 times (number of observations in the dataset).

2.5. Handling non-detectable measurements of BC

Concentrations of indoor BC were skewed (geometric standard de-
viation=3). Twenty-four percent (24%) of indoor BC samples and 2%
of outdoor BC samples were below the LOD of 0.12 μg/m3. All samples
below the LOD were replaced with the value of LOD/2 as recommended
by Hornung et al. (Hornung and Reed, 1990)

3. Results

3.1. Measurements and housing characteristics

After measurements were repeated twice in the 23 homes, one ob-
servation was lost in one home due to a pump failure. Consequently,
there were 45 observations from the 23 homes. Table 1 presents data on
sample collection in the current study stratified by seasons. Sample
measurements were obtained from the fall, winter, summer and spring
seasons (22.2%, 24.4%, 28.9% and 24.4%, respectively). Table 2 pre-
sents categorical characteristics of the homes utilized in this study. Of
the 45 visits, at least one window was opened in 29 of them. Candles
were lit during 6 of the visits. Cleaning activities were performed in the
homes during 28 visits.

Table 3 presents the summary statistics for numerical home char-
acteristics. The average annual air infiltration rate in the study homes
ranged from 0.02 to 5.07 air changes per hour. The nearest distance of a
home to a major road was 32m, and the home farthest from a major
road was 3.90 km away. Homes with and without electrostatic/HEPA
HVAC filters had median indoor/outdoor BC ratios of 0.18 and 0.62,
respectively. The median fraction of BC in the indoor and outdoor PM2.5

samples was 0.04 and 0.09, respectively (Figs. S2 and S3).

3.2. Inferential information from the predictive model

Of the nine housing characteristics and occupant activities in-
vestigated, only five (outdoor BC, average annual air infiltration via
unintentional leaks, HEPA/electrostatic HVAC filter, open/closed win-
dows, candles) were selected as predictors of indoor black carbon in the
chosen predictive model (equation (1)).

Table 1
Samples collected by seasons.

Season Duration Percentage of samples

Fall September 22 – December 21 22.2%
Winter December 22 – March 20 24.4%
Summer June 21 – September 22 28.9%
Spring March 21 – June 20 24.4%

Seasons= astronomical seasons (obtained from the National Centers for
Environmental Information) (National Centers for Environmental Information,
2017).

Table 2
Descriptive statistics of the categorical characteristics examined in the 45 Visits.

Categorical characteristics Yes No

HVAC filter (electrostatic/HEPA) 20 25
Exhaust hood in kitchen 34 11
At least one window opened 29 16
Lit candles 6 39
Use of fireplace 2 43
Cleaning activities (vacuuming, sweeping, or dusting) 28 17
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Where, indoor BC concentrationit is the measured indoor BC in each home i
on sampling visit t, bi is a random intercept specific to each home i, β0 is
the fixed intercept, β1 is the effect of the measured BC in the local outdoor
environment of each home i on sampling visit t, β2 is the effect of average
annual air infiltration via unintentional leaks in each home i, β3 is the
effect of electrostatic/HEPA HVAC filter in each home i, β4 is the effect of
open or closed windows in each home i during visit t, β5 is the effect of
presence or absence of lit candles or absence of lit candles in each home i
during visit t, β6 is the effect of the presence or absence of a kitchen
exhaust hood in each home i and εit is the residual error in the model.

Table 4 presents the results of the regression model obtained using
the complete dataset. These results are based on 48-h averages of the
indoor BC levels in the 45 sampling events. The independent variables
(covariates) that were significantly associated with indoor BC con-
centration were outdoor BC concentration, electrostatic/HEPA HVAC
filters, and lit candles. An increase of 1 μg/m3 in outdoor BC was as-
sociated with 0.53 μg/m3 increase in indoor BC (Table 4). With other
covariates being equal between the two groups, homes with efficient
HVAC filters were associated with 0.26 μg/m3 decrease in indoor BC
when compared to homes without HVAC filters. Homes where candles
were lit, had 0.41 μg/m3 higher indoor BC when compared to homes
where candles were not lit, with other covariates being equal between
the two groups. Indoor BC was positively associated with open windows
and average air infiltration (albeit not significant) (Table 4).

3.3. Predictive capability of the model

Fig. 1 shows a scatter plot of the measured indoor BC concentrations
and the predicted indoor BC concentrations as obtained from the leave-one-
out cross-validation algorithm. Measured indoor BC concentrations ranged
from 0.06 to 2.18 μg/m3 (mean=0.43 μg/m3, SD=0.42); predicted in-
door concentrations ranged from−0.09–1.70 μg/m3 (mean=0.43 μg/m3,

SD=0.38). Negative predicted values are assumed to be<LOD. The
predicted indoor BC concentrations explained 78% of the variability in
measured indoor BC concentrations (Out-of-sample R2=0.77). The stan-
dard deviation of the unexplained variance in measured indoor BC con-
centration was 0.20 μg/m3 (root-mean-squared error, RMSE).

3.4. Sensitivity analysis

Using the complete dataset, the result of a univariate model that had
only outdoor BC as a covariate yielded an R2 of 49% (Table S1). This was
a 22% loss in R2 when compared to the final model that included indoor
covariates in addition to outdoor BC (Table 4). Removing the insignif-
icant covariates from the final model in Table 4 (average annual in-
filtration and open windows) and rerunning the model did not con-
siderably change the regression estimates in Table 4 (Table S2). Likewise,
the out-of-sample R2 obtained from the leave-one-out cross-validation
method (R2=76%) (Fig. S4) was similar to that obtained in the model
that included the insignificant variables (R2=78%) (Fig. 1). Sensitivity
analysis, performed where season was added to the final model, showed
that the effect of season on indoor BC was not significant (Table S3).
Furthermore, results of the leave-one-out cross-validation method in-
dicates that the model which includes season as a covariate had a slight
increase in error (RMSE) and explained less variability in indoor BC (Fig.
S5) when compared to the final model (Fig. 1).

Table S4 presents the final model that was developed from the
complete dataset but with the exclusion of one influential observation.
Removing the influential observation resulted to a 10% loss in R2 (Table
S4). In this model, 1 μg/m3 increase in outdoor BC was associated with
0.43 μg/m3 increase in indoor BC (compared to 0.53 μg/m3 in the final
model containing the influential observation). Other regression esti-
mates in both models (models with and without the influential ob-
servation) were similar (Table S4 and Table 4). The influential ob-
servation was the observation with the maximum measured indoor and
outdoor BC (2.2 μg/m3 and 3.6 μg/m3, respectively) (Fig. 1). Using the
dataset that did not contain the influential observation, the result of a
univariate model that only had outdoor BC as a covariate yielded an R2

of 21% (Table S5). This is a 40% decrease in R2 when compared to the
model R2 obtained from using both indoor factors and outdoor BC as
predictors of indoor BC (Table S4). Cross-validation of the model
without the influential observation showed that the model explained
less variation in indoor BC (Fig. S6) when compared to the validation of
the final model (Fig. 1).

Using measurements of average local outdoor BC concentration and
average air infiltration rate of a building, combined with the home
conditions in the presented final model, estimates of average indoor BC
can be obtained in real-life scenarios (equation (2)).

= + ×
+ ×

+
+

Predicted indoor BC outdoor BC concentration
air infiltration via leaks

if HVAC filter present
if at least one window is opened
if at least one candle is lit

0.06 0.53
0.09
0.26( )
0.12( )
0.41( ) (2)

Table 3
Descriptive statistics of measurements in the study (n= 45).

Home characteristics Q1 Median Mean Q3 SD

Indoor BC (μg/m3) 0.13 0.28 0.43 0.62 0.42
Outdoor BC (μg/m3) 0.53 0.68 0.85 1.16 0.58
Total indoor/outdoor ratio of BC 0.17 0.47 0.50 0.69 0.35
Indoor/outdoor ratio of BC in homes with HVAC filter (electrostatic/HEPA) 0.13 0.18 0.33 0.40 0.27
Indoor/outdoor ratio of BC in homes without HVAC filter (electrostatic/HEPA) 0.47 0.62 0.64 0.84 0.35
Annual air infiltration via unintentional leaks (h−1) 0.29 0.42 0.61 0.66 0.77
Distance to major road (m) 288 393 651 744 822

BC=black carbon, Q1=25th percentile, Q3= 75th percentile, Indoor/outdoor ratio of BC is based on individual home ratios. LOD for BC samples= 0.12 μg/m3

Table 4
Results from the final model containing the complete dataset (n= 45)1.

Effects Regression
estimate (β)

Standard
error

P – Value2

Intercept −0.06 0.09 0.52
Outdoor BC concentration 0.53 0.05 < 0.001 *
Average annual air infiltration

via unintentional leaks
0.09 0.05 0.12

Electrostatic/HEPA HVAC filter
(yes vs. no) 3

−0.26 0.10 0.02 *

Open windows (yes vs. no) 3 0.12 0.08 0.12
Lighting candles (yes vs. no) 3 0.41 0.08 < 0.001 *

1Results are applicable to 48-h average of indoor BC, coefficient of multiple
determination (R2)= 0.71, root mean squared error= 0.71.
2* indicates statistically significant variables (P < 0.05).
3Reference group=No.
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4. Discussion

A linear mixed-effect model was developed to predict indoor BC
concentrations by using the measured outdoor BC concentrations and
home characteristics as predictors. Predicted indoor BC concentrations
explained 78% of the variability in the measured indoor BC. As com-
pared to the models by Baxter et al., 2007a, 2007b, the present model
allowed incorporating electrostatic/HEPA HVAC filters, which poten-
tially decrease indoor BC levels.

The median levels of BC in the current study (indoor= 0.28 μg/m3,
outdoor= 0.68 μg/m3) and the indoor/outdoor ratio (I/O) of BC (0.47)
were lower than the levels and ratios reported in other studies. In the
current study, median I/O in homes with electrostatic/HEPA HVAC
filters was 0.18 and 0.62 in homes without HVAC filters. This finding
confirms that electrostatic/HEPA HVAC filters reduced indoor BC, as
estimated in the regression model. Baxter et al. reported median BC in
Boston homes as 0.49 μg/m3 and 0.55 μg/m3 indoors and outdoors,
respectively (I/O=0.89) (Baxter et al., 2007b). Coombs et al. reported
median BC in Cincinnati to be 0.99 μg/m3 and 0.94 μg/m3 in indoor and
outdoor environments, respectively (I/O=1.05) (Coombs et al., 2016).
Furthermore, 48-h mean I/O of BC in New York City was 0.93 and 0.84
during the summer and winter seasons, respectively (Kinney et al.,
2002). The low I/O ratio in the current study indicates that there are
other unstudied housing characteristics that reduce indoor BC in the
study homes. It may be possible that the variation in the actual number
of windows opened during the study sampling period can act as un-
studied black carbon sinks in homes that had indoor sources of black
carbon. This is because windows were documented as a categorical
variable in the study (i.e., at least one window opened during the
sampling period or all closed). Our sampling results show that the
median fraction of BC in the sampled PM2.5 mass was 0.09 outdoors,
but much lower indoors (0.04). The data suggest that BC was not a
major indoor pollutant in the study homes, except when emitted from a
few indoor sources as observed in the current study.

4.1. Housing characteristics/occupant activities associated with an increase
in indoor BC

Based on the amount of variation contributed to indoor BC by the
covariates, outdoor BC was the most significant contributor to indoor
BC. An increase of 1 μg/m3 in outdoor BC was associated with an in-
crease of 0.53 μg/m3 in indoor BC. The data suggest that on average
roughly half of the level of increase in outdoor BC infiltrated indoor

environments. Similarly, in a univariate model presented by Baxter
et al. (2007a), there was a significant positive relationship (R2= 0.49)
between outdoor and indoor BC levels. This relationship is identical to
the positive relationship found from the univariate model of indoor and
outdoor BC in the current study (R2= 0.49). The observed result is
expected, given that vehicular exhaust emissions are major sources of
ambient BC (World Health Organization (WHO), 2012), and all the
homes used in this study were in proximity to a highway or interstate
(median distance= 393m). It was observed that including the data
pair of maximum indoor and outdoor BC (influential observation)
strengthened the relationship between indoor and outdoor BC, and
added accuracy to the model output. This finding suggests that having
measurements of pollutants that range at least one order of magnitude
provides better representation of data for optimum model development.

Lit candles were the second most significant contributors to indoor
BC after outdoor BC. Homes, where candles were lit, were associated
with 0.41 μg/m3 increase in indoor BC when compared to homes where
candles were not lit. Paraffin wax is a common type of candle wax that
contains heavy hydrocarbon chains with carbon chain lengths that can
be greater than 50 (C50) (Kuszlik et al., 2010). This may explain why
the effect of burning candles in only 6 of the 45 sampling periods in this
study (13%) was sufficient enough to have a significant increase in
indoor BC. Interestingly, despite the relatively large proportion of study
homes with lit candles (26%), there was no statistically significant in-
crease in indoor BC attributable to lit candles in the study by Baxter
et al. (2007b) A reason for this discrepancy could be that some types of
candles emit negligible amounts of BC. Further research into BC emis-
sions from different types of candle wax will aid the understanding of
the observed differences. Already, it is known that scented candles emit
ultrafine particles (size of BC particles) (Anthonisen et al., 1994) about
twice less in concentration when compared to pure wax candles
(Afshari et al., 2005). Moreover, the concentration of BC particles
emitted from unsteady burning candles (light and extinguish) is greater
than that of steady burning candles (Zai et al., 2006).

4.2. Housing characteristics/occupant activities associated with a decrease
in indoor BC

In the study homes, electrostatic or HEPA HVAC filter was the most
significant variable that reduced indoor BC. Homes with electrostatic or
HEPA HVAC filters had 0.26 μg/m3 decrease in indoor BC when com-
pared to homes without such filters. This finding is expected, given that
the efficiency of HEPA filters is> 99.97% (American National

Fig. 1. Scatter plot of measured indoor BC and predicted indoor BC levels obtained from leave-one-out cross-validation. RMSE= root-mean-squared error of the
predictive model.
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Standards Institute/Air-Conditioning et al., 2013). Electrostatic filters
reduce PM by charging and trapping PM on oppositely charged plates
(Agrawal et al., 2010). It would be interesting to distinguish between
the effects of HEPA and electrostatic HVAC filters on indoor BC.
However, studying the effect of the specific type of filter in the HVAC
systems was outside the scope of the study.

In the current study, the reducing effect (0.26 μg/m3) of electro-
static or HEPA HVAC filters on indoor BC does not account for the
potential difference in efficiency of these filters that may be observed in
new versus older filters. It also does not account for the potential dif-
ferences that can be observed in buildings of different volumes.

4.3. Housing characteristics/occupant activities that explained less
variability in indoor BC

Of the five housing characteristics in the predictive model, average
annual air infiltration via unintentional leaks and open windows did not
significantly modify indoor BC. Including these variables added some
predictive power to the model (higher R2). One reason for the non-
significant findings can be a result of low statistical power (n=45).
Furthermore, the effect of open windows is complex, as it facilitates
outdoor-indoor transport of particles from outdoor sources, but can also
facilitate exfiltration of particles produced from indoor sources. This
may explain why the effect of windows kept open was not significant.
PM infiltrates from local outdoor environments (Matson, 2005), and
indoor pollutants can accumulate in homes with very tightly sealed
building envelopes (Coombs et al., 2016). Our results show that one
unit increase in air exchange rate via unintentional leaks in a building
envelope was associated with 0.09 μg/m3 increase in indoor BC. This
increase was not significant, likely due to the losses through Brownian
diffusion of PM≤0.1 μm (Liu and Nazaroff, 2001) (size of BC particles)
(Anthonisen et al., 1994) which decreases the infiltration factor (Rim
et al., 2010).

We initially assessed nine housing characteristics that potentially
modified the concentration of indoor BC, and five housing character-
istics were selected through the model development phase of the cur-
rent study. Overall, we suggest that these five characteristics serve as
better proxies or predictors of indoor BC than other housing char-
acteristics and conditions documented in the study (presence/absence
of kitchen exhaust hoods, use of fireplace, cleaning activities, and dis-
tance to the nearest major road). An explanation for the low variation of
indoor BC explained by the presence/absence of kitchen exhaust hood,
could be the unknown frequency of the use of kitchen exhaust hoods
during the sampling periods. In the questionnaires administered, the
subjects were only asked how often they used an exhaust hood in the
kitchen. However, they were not explicitly asked if they operated their
exhaust hoods during the sampling periods.

It was unexpected that the use of fireplace was not a proxy for in-
door BC. The main reason could be the low number of samples collected
while a fireplace was being used: in only 2 of the 45 visits. Furthermore,
different types of woods used in fireplaces and differing intensities of
the fire emit varying levels of BC (Fine et al., 2001). Results from
measurements of PM made during the burning of six types of wood in
fireplaces indicate that at least 80% of PM emitted from burning woods
in fireplaces are organic carbon and not black carbon (Fine et al., 2001).
In addition, most PM emitted from a wood-burning fireplace is directed
to the chimney (Stone, 1969). Therefore, the particle transport from the
fireplace to other parts of the indoor environment is limited. In con-
trast, combustion particles produced by burning candles may remain
airborne for extended periods, which increases indoor BC.

The relative adhesive force of PM on surfaces increases as particle
aerodynamic diameter decreases (Hinds, 1982). Consequently, the
settled BC particles (which are ultrafine) may not be easily removed by
air turbulence and human activities, which are naturally associated
with cleaning (Hinds, 1982). This may explain why vacuuming,
sweeping, and dusting were not found to be good predictors of indoor

BC level. It is acknowledged that the dominating source of outdoor BC
is from outdoor sources such as diesel vehicular emissions (World
Health Organization (WHO), 2012). Thus, distance to a major road is
likely a proxy of outdoor BC concentrations. This gives a possible
reason why outdoor BC concentration and not distance to the nearest
major road explained more variation in indoor BC.

4.4. Application of the predictive model

The model can be used as a predictive model to support risk as-
sessment in public health. The model provides the first step at antici-
pating cumulative exposure levels to BC, because cumulative exposure
level is a function of indoor concentration (which the models provide),
outdoor concentration and time spent indoors and outdoors (duration
of exposure) (Dimitroulopoulou et al., 2001; Zeger et al., 2000). In
some regions, outdoor levels of BC can be obtained from stationary
monitoring stations and output of predictive models (Gryparis et al.,
2007). This suggests that the estimation of average exposure level to BC
is achievable when time spent indoors and outdoors is known.

One variable that still requires actual measurement for the utiliza-
tion of the model presented in the current study is air infiltration.
However, estimates of air infiltration can be made based on existing
models, which are discussed. Infiltration is a function of air leakage
area, stack coefficient, difference between indoor and outdoor tem-
perature, wind coefficient and average windspeed (American Society of
Heating, 2017). Building age, building size, and other household fea-
tures have been used to predict air leakage area and the models have
been presented in peer-reviewed studies (Chan et al., 2005; Chan,
2013). Furthermore, the ventilation and infiltration chapter of the
ASHRAE Fundamentals contains empirical values of stack and wind
coefficients based on wind speed, direction, and building shape and
geometry (American Society of Heating, 2017). Therefore, one can
conveniently obtain air infiltration upon readily available weather data
and building information (e.g., age, size, shape), and incorporate the
value obtained into the model in the current study to provide an an-
ticipated level of indoor BC. Due to the cost of environmental mon-
itoring, it is often not feasible to directly measure BC inside multiple
individual homes in large-scale population-based studies. The presented
model for indoor BC can be used when regional estimates of indoor BC
are needed to support risk assessment in public health practice.

5. Limitations

The subjects in this study were not specifically asked if they used
their kitchen exhaust hoods during each 48-h sampling period.
However, we expected that subjects would make use of this appliance
for the preparation of at least one out of the six meals in a 48-h period.
Consequently, a cumulative effect of exhaust hoods on indoor BC was
assessed. Our sample size was not large enough to detect seasonal dif-
ferences that may be associated with BC. Indoor BC was only performed
in the bedroom and may not be close to an indoor source of BC. In
addition, information on lit candles, and window opened during the
sampling period were based on questionnaire data which can have re-
call bias. However, this method was employed in order to reduce the
severity of subject recall bias which may occur when subjects are asked
to quantify the frequency of window opening and the number of can-
dles lit during the sampling periods. Due to the categorical structure of
the variable on candle use, the model does not account for extreme
situations where home occupants light numerous candles that are not
typical for the average home occupant. Furthermore, the concentration
of BC migrating through a window may vary with the window area and
weather conditions. There is a potential for selection bias which can
reduce the generalizability of the study findings, as samples of BC were
collected only from houses with ≥0.33 μg/m3 outdoor elemental
carbon attributable to traffic. However, the study provides information
that can be used to conduct a similar study in remote locations where
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elemental carbon attributable to traffic is likely to be < 0.33 μg/m
(Janssen et al., 1997).

6. Conclusions

The data show that home characteristics and outdoor BC con-
centrations can be used to predict indoor BC levels with reasonable
accuracy. In the current study, the most significant sources of indoor BC
were outdoor BC and lit candles, whereas the HVAC system with HEPA/
electrostatic filters was the most significant home appliance that re-
duced indoor BC. It is recommended that occupants, who burn candles
and/or have homes situated in locations with high outdoor BC levels,
consider installing HEPA filters in their HVAC systems. Housing con-
ditions that include the presence of electrostatic or HEPA filter in the
HVAC system and no lit candles facilitate low indoor BC concentrations.

Conflicts of interest

None.

Acknowledgment

This study was supported by the United States Department of
Housing and Urban Development (Grant OHHHU0027-14). K.I. was
funded by the University of Cincinnati Graduate Assistantship and
Graduate Scholarship. Additional support was provided by the National
Institutes of Health (Grant P30ES009089).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.atmosenv.2018.12.053.

References

Afshari, A., Matson, U., Ekberg, L., 2005. Characterization of indoor sources of fine and
ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 15, 141–150.

Agrawal, S.R., Kim, H.-J., Lee, Y.W., Sohn, J.-H., Lee, J.H., Kim, Y.-J., Lee, S.-H., Hong, C.-
S., Park, J.-W., 2010. Effect of an air cleaner with electrostatic filter on the removal of
airborne house dust mite allergens. Yonsei Med. J. 51 (6), 918–923.

American National Standards Institute/Air-Conditioning, Heating, and Refrigeration
Institute (ANSI/AHRI), 2013. Performance Rating of Commercial and Industrial Air
Filter Equipment. In Standard 850.

American Society of Heating, 1993. Refrigeration and Air-Conditioning Engineers
(ASHRAE): A Method of Determining Air Change Rates in Detached Dwellings.
American Society of Heating, Refrigerating and Air-Conditioning Engineers.

American Society of Heating, 2017. Refrigeration and air-conditioning engineers
(ASHRAE): handbook of Fundamentals. Chapter 16 (16.24). In: American Society of
Heating. Refrigerating and Air Conditioning Engineers, Atlanta.

Anthonisen, N.R., Connett, J.E., Kiley, J.P., Altose, M.D., Bailey, W.C., Buist, A.S.,
Conway, W.A., Enright, P.L., Kanner, R.E., O'Hara, P., Owens, G.R., Scanlon, P.D.,
Tashkin, D.P., Wise, R.A., 1994. Effects of smoking intervention and the use of an
inhaled anticholinergic bronchodilator on the rate of decline of FEV1: the Lung
Health Study. Jama 272 (19), 1497–1505.

Arlot, S., Celisse, A., 2010. A survey of cross-validation procedures for model selection.
Stat. Surv. 4, 40–79.

ASTM, 2010. Standard Test Method for Determining Air Leakage Rate by Fan
Pressurization.

Baxter, L.K., Clougherty, J.E., Paciorek, C.J., Wright, R.J., Levy, J.I., 2007a. Predicting
residential indoor concentrations of nitrogen dioxide, fine particulate matter, and
elemental carbon using questionnaire and geographic information system based data.
Atmos. Environ. 41 (31), 6561–6571.

Baxter, L.K., Clougherty, J.E., Laden, F., Levy, J.I., 2007b. Predictors of concentrations of
nitrogen dioxide, fine particulate matter, and particle constituents inside of lower
socioeconomic status urban homes. J. Expo. Sci. Environ. Epidemiol. 17 (5), 433.

Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F., 2009. Hospital admissions and
chemical composition of fine particle air pollution. Am. J. Respir. Crit. Care Med. 179
(12), 1115–1120.

Bowatte, G., Lodge, C., Lowe, A., Erbas, B., Perret, J., Abramson, M., Matheson, M.,
Dharmage, S., 2015. The influence of childhood traffic‐related air pollution exposure
on asthma, allergy and sensitization: a systematic review and a meta‐analysis of birth
cohort studies. Allergy 70 (3), 245–256.

Brasche, S., Bischof, W., 2005. Daily time spent indoors in German homes–baseline data
for the assessment of indoor exposure of German occupants. Int. J. Hyg Environ.
Health 208 (4), 247–253.

Buonanno, G., Stabile, L., Morawska, L., Russi, A., 2013. Children exposure assessment to
ultrafine particles and black carbon: the role of transport and cooking activities.
Atmos. Environ. 79, 53–58.

Chan, W.R., 2013. Analysis of Air Leakage Measurements from Residential Diagnostics
Database.

Chan, W.R., Nazaroff, W.W., Price, P.N., Sohn, M.D., Gadgil, A.J., 2005. Analyzing a
database of residential air leakage in the United States. Atmos. Environ. 39 (19),
3445–3455.

Coombs, K.C., Chew, G.L., Schaffer, C., Ryan, P.H., Brokamp, C., Grinshpun, S.A.,
Adamkiewicz, G., Chillrud, S., Hedman, C., Colton, M., Ross, J., Reponen, T., 2016.
Indoor air quality in green-renovated vs. non-green low-income homes of children
living in a temperate region of US (Ohio). Sci. Total Environ. 554, 178–185.

Corsi, R.L., Siegel, J.A., Chiang, C., 2008. Particle resuspension during the use of vacuum
cleaners on residential carpet. J. Occup. Environ. Hyg. 5 (4), 232–238.

Cox, J., Isiugo, K., Ryan, P., Grinshpun, S., Yermakov, M., Desmond, C., Jandarov, R.,
Vesper, S., Ross, J., Chillrud, S., Dannemiller, K., Reponen, T., November 2018.
Effectiveness of a portable air cleaner in removing traffic related aerosol particles in
homes of asthmatic children. Indoor Air 28 (6), 818–827.

Dimitroulopoulou, C., Ashmore, M., Byrne, M., Kinnersley, R., 2001. Modelling of indoor
exposure to nitrogen dioxide in the UK. Atmos. Environ. 35 (2), 269–279.

D'Anna, A., 2009. Combustion-formed nanoparticles. Proc. Combust. Inst. 32 (1),
593–613.

Fine, P.M., Cass, G.R., Simoneit, B.R., 2001. Chemical characterization of fine particle
emissions from fireplace combustion of woods grown in the northeastern United
States. Environ. Sci. Technol. 35 (13), 2665–2675.

Gryparis, A., Coull, B.A., Schwartz, J., Suh, H.H., 2007. Semiparametric latent variable
regression models for spatiotemporal modelling of mobile source particles in the
greater Boston area. J. Roy. Stat. Soc.: Series C (Appl. Statist.) 56 (2), 183–209.

Habre, R., Coull, B., Moshier, E., Godbold, J., Grunin, A., Nath, A., Castro, W., Schachter,
N., Rohr, A., Kattan, M., Spengler, J., Koutrakis, P., 2014. Sources of indoor air
pollution in New York City residences of asthmatic children. J. Expo. Sci. Environ.
Epidemiol. 24 (3), 269.

Han, Y., Cao, J., Lee, S., Ho, K., An, Z., 2010. Different characteristics of char and soot in
the atmosphere and their ratio as an indicator for source identification in Xi'an,
China. Atmos. Chem. Phys. 10 (2), 595–607.

Hinds, W.C., 1982. Chapter 6: adhesion of particles. In: Properties Behavior and
Measurement of Airborne Particles, Aerosol Technology. John Wiley & Sons Inc., New
York, pp. 130.

Hornung, R.W., Reed, L.D., 1990. Estimation of average concentration in the presence of
nondetectable values. Appl. Occup. Environ. Hyg 5 (1), 46–51.

Janssen, N.A., Van Mansom, D.F., Van Der Jagt, K., Harssema, H., Hoek, G., 1997. Mass
concentration and elemental composition of airborne particulate matter at street and
background locations. Atmos. Environ. 31 (8), 1185–1193.

Katsoulis, M., Dimakopoulou, K., Pedeli, X., Trichopoulos, D., Gryparis, A., Trichopoulou,
A., Trichopoulou, A., Katsouyanni, K., 2014. Long-term exposure to traffic-related air
pollution and cardiovascular health in a Greek cohort study. Sci. Total Environ. 490,
934–940.

Kim, J.J., Smorodinsky, S., Lipsett, M., Singer, B.C., Hodgson, A.T., Ostro, B., 2004.
Traffic-related air pollution near busy roads: the east bay children's respiratory health
study. Am. J. Respir. Crit. Care Med. 170 (5), 520–526.

Kinney, P.L., Aggarwal, M., Northridge, M.E., Janssen, N.A., Shepard, P., 2000. Airborne
concentrations of PM (2.5) and diesel exhaust particles on Harlem sidewalks: a
community-based pilot study. Environ. Health Perspect. 108 (3), 213.

Kinney, P.L., Chillrud, S.N., Ramstrom, S., Ross, J., Spengler, J.D., 2002. Exposures to
multiple air toxics in New York City. Environ. Health Perspect. 110 (Suppl. 4), 539.

Kuszlik, A., Meyer, G., Heezen, P., Stepanski, M., 2010. Solvent-free slack wax de-oi-
ling—physical limits. Chem. Eng. Res. Des. 88 (9), 1279–1283.

LaRosa, L.E., Buckley, T.J., Wallace, L.A., 2002. Real-time indoor and outdoor mea-
surements of black carbon in an occupied house: an examination of sources. J. Air
Waste Manag. Assoc. 52 (1), 41–49.

Lawless, P.A., Rodes, C.E., Ensor, D.S., 2004. Multiwavelength absorbance of filter de-
posits for determination of environmental tobacco smoke and black carbon. Atmos.
Environ. 38 (21), 3373–3383.

Leech, J.A., Nelson, W.C., Burnett, R.T., Aaron, S., Raizenne, M.E., 2002. It's about time: a
comparison of Canadian and American time-activity patterns. J. Expo. Sci. Environ.
Epidemiol. 12 (6), 427.

Liu, D.-L., Nazaroff, W.W., 2001. Modeling pollutant penetration across building envel-
opes. Atmos. Environ. 35 (26), 4451–4462.

Lunden, M.M., Delp, W.W., Singer, B.C., 2015. Capture efficiency of cooking‐related fine
and ultrafine particles by residential exhaust hoods. Indoor Air 25 (1), 45–58.

Matson, U., 2005. Indoor and outdoor concentrations of ultrafine particles in some
Scandinavian rural and urban areas. Sci. Total Environ. 343 (1–3), 169–176.

National Centers for Environmental Information: "Meteorological Versus Astronomical
Seasons." National Oceanic and Atmospheric Administration. [Online] Available at:
https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons.
Accessed July 17, 2017.

National Institute for Occupational Safety and Health (NIOSH), 1995. Diesel Particulate
Matter (As Elemental Carbon). In 5040.

Ng, L.C., Persily, A.K., Emmerich, S.J., 2015. Infiltration and ventilation in a very tight
home. In: 36th Air Infiltration and Ventilation Centre Conference.

Patel, M.M., Hoepner, L., Garfinkel, R., Chillrud, S., Reyes, A., Quinn, J.W., Perera,
Frederica, Miller, R., 2009. Ambient metals, elemental carbon, and wheeze and cough
in New York City children through 24 months of age. Am. J. Respir. Crit. Care Med.
180 (11), 1107–1113.

Petzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T.,
Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., Zhang, X.Y.,

K. Isiugo et al. Atmospheric Environment 201 (2019) 223–230

229

https://doi.org/10.1016/j.atmosenv.2018.12.053
https://doi.org/10.1016/j.atmosenv.2018.12.053
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref1
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref1
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref2
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref2
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref2
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref3
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref3
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref3
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref4
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref4
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref4
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref5
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref5
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref5
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref6
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref6
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref6
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref6
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref6
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref7
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref7
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref8
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref8
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref9
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref9
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref9
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref9
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref10
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref10
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref10
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref11
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref11
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref11
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref12
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref12
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref12
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref12
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref13
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref13
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref13
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref14
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref14
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref14
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref15
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref15
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref16
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref16
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref16
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref17
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref17
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref17
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref17
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref18
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref18
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref19
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref19
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref19
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref19
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref20
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref20
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref21
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref21
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref22
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref22
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref22
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref23
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref23
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref23
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref24
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref24
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref24
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref24
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref25
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref25
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref25
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref26
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref26
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref26
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref27
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref27
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref28
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref28
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref28
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref29
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref29
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref29
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref29
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref30
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref30
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref30
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref31
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref31
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref31
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref32
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref32
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref33
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref33
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref34
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref34
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref34
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref35
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref35
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref35
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref36
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref36
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref36
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref37
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref37
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref38
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref38
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref39
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref39
https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref41
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref41
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref42
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref42
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref43
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref43
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref43
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref43
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref44
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref44


2013. Recommendations for reporting" black carbon" measurements. Atmos. Chem.
Phys. 13 (16), 8365–8379.

Power, M.C., Weisskopf, M.G., Alexeeff, S.E., Coull, B.A., Spiro III, A., Schwartz, J., 2011.
Traffic-related air pollution and cognitive function in a cohort of older men. Environ.
Health Perspect. 119 (5), 682.

Rim, D., Wallace, L., Persily, A., 2010. Infiltration of outdoor ultrafine particles into a test
house. Environ. Sci. Technol. 44 (15), 5908–5913.

Rim, D., Wallace, L., Nabinger, S., Persily, A., 2012. Reduction of exposure to ultrafine
particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and
burner position. Sci. Total Environ. 432, 350–356.

RStudio, 2016. Integrated Development for R. RStudio, Inc., Boston, MA.
Ryan, P.H., LeMasters, G.K., Levin, L., Burkle, J., Biswas, P., Hu, S., Grinshpun, S.,

Reponen, T., 2008. A land-use regression model for estimating microenvironmental
diesel exposure given multiple addresses from birth through childhood. Sci. Total
Environ. 404 (1), 139–147.

Sadiktsis, I., Nilsson, G., Johansson, U., Rannug, U., Westerholm, R., 2016. Removal of
polycyclic aromatic hydrocarbons and genotoxic compounds in urban air using air
filter materials for mechanical ventilation in buildings. Sci. Tech. Built Environ. 22
(3), 346–355.

Sexton, K., Letz, R., Spengler, J.D., 1983. Estimating human exposure to nitrogen dioxide:

an indoor/outdoor modeling approach. Environ. Res. 32 (1), 151–166.
Stone, R.L., 1969. Fireplace operation depends upon good chimney design. ASHRAE J. 63.
The Energy Conservatory: "Minneapolis Blower Door Operation Manual for Model 3 and

Model 4 Systems." [Online] Available at: http://energyconservatory.com/wp-
content/uploads/2014/07/Blower-Door-model-3-and-4.pdf. Accessed July 17, 2017.

Vrieze, S.I., 2012. Model selection and psychological theory: a discussion of the differ-
ences between the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC). Psychol. Methods 17 (2), 228.

World Health Organization (WHO), 2012. Health Effects of Black Carbon. The WHO
European Centre for Environment and Health, Bonn.

Yan, B., Kennedy, D., Miller, R.L., Cowin, J.P., Jung, K.-h., Perzanowski, M., Balletta, M.,
Perera, F.P., Kinney, P.L., Chillrud, S.N., 2011. Validating a nondestructive optical
method for apportioning colored particulate matter into black carbon and additional
components. Atmos. Environ. 45 (39), 7478–7486.

Zai, S., Zhen, H., Jia-Song, W., 2006. Studies on the size distribution, number and mass
emission factors of candle particles characterized by modes of burning. J. Aerosol Sci.
37 (11), 1484–1496.

Zeger, S.L., Thomas, D., Dominici, F., Samet, J.M., Schwartz, J., Dockery, D., Cohen, A.,
2000. Exposure measurement error in time-series studies of air pollution: concepts
and consequences. Environ. Health Perspect. 108 (5), 419.

K. Isiugo et al. Atmospheric Environment 201 (2019) 223–230

230

http://refhub.elsevier.com/S1352-2310(19)30020-2/sref44
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref44
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref45
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref45
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref45
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref46
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref46
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref47
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref47
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref47
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref48
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref49
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref49
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref49
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref49
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref50
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref50
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref50
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref50
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref51
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref51
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref52
http://energyconservatory.com/wp-content/uploads/2014/07/Blower-Door-model-3-and-4.pdf
http://energyconservatory.com/wp-content/uploads/2014/07/Blower-Door-model-3-and-4.pdf
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref54
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref54
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref54
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref55
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref55
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref56
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref56
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref56
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref56
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref57
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref57
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref57
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref58
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref58
http://refhub.elsevier.com/S1352-2310(19)30020-2/sref58

	Predicting indoor concentrations of black carbon in residential environments
	Introduction
	Methods
	Study overview
	Environmental monitoring
	Documenting housing characteristics
	Statistical analysis
	Handling non-detectable measurements of BC

	Results
	Measurements and housing characteristics
	Inferential information from the predictive model
	Predictive capability of the model
	Sensitivity analysis

	Discussion
	Housing characteristics/occupant activities associated with an increase in indoor BC
	Housing characteristics/occupant activities associated with a decrease in indoor BC
	Housing characteristics/occupant activities that explained less variability in indoor BC
	Application of the predictive model

	Limitations
	Conclusions
	Conflicts of interest
	Acknowledgment
	Supplementary data
	References




