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ABSTRACT 

Before selecting new windows for a building, 
consideration of what types of windows will work 
optimally to improve building energy efficiency is 
paramount. In this decision process, three key factors 
are fundamental to assess windows performance: 
Visual Transmittance (VT), Solar Heat Gain 
Coefficient (SHGC), and U-factor. However, using 
low SHGC windows may decrease the building 
cooling loads, but has the potential to increase both 
heating and light loads due to the coatings, tints, and 
films applied to achieve the low SHGC. This paper 
introduces a genetic algorithm optimization approach 
to the selection of these three important window 
properties for the goal of energy efficiency, based 
upon the glazing product database of the National 
Fenestration Rating Council (NFRC). End energy use 
and savings associated with the optimized window 
properties are compared with baseline models. The 
findings of this research will benefit designers, 
contractors, suppliers, property owners and 
researchers to identify optimum window properties 
from databases of existing window products, which 
would help to further improve building energy 
efficiency. 

INTRODUCTION 
Windows are an important element in energy efficient 
building design, and contribute to annual energy 
consumption, indoor lighting conditions, and view out 
for occupants. With respect to heating and cooling 
loads, studies have estimated that about 20-40% of 
total energy use is attributable to heat loss or gains 
through building fenestration (Warner, 1995; Bülow-
Hübe, 2001; Grynning et al., 2013). In terms of 
artificial lighting, electrical lighting loads have been 
demonstrated in some studies as a major building 
energy end use, accounting for as much as 22% in 
office buildings and 15% in residential buildings in the 
U.S. (Pérez-Lombard et al., 2008). In addition to 
building loads, windows also influence daylighting 
performance (Ruck, 2006; Doulo et al., 2008), and 
other non-energy factors, such as view out, visual 
comfort, work productivity, human physiology and 
behavior (Edwards et al., 2002; Veitch et al., 2004; 
Lee, et al., 2013). Therefore, the selection of a proper 
window system is one of the most important strategies 

for effectively conserving energy in buildings and 
improving daylighting performance (Warner, 1995; 
Galasiu et al., 2006). Before selecting new windows 
for a building, consideration of what types of windows 
will work optimally to improve building energy 
efficiency is paramount. In this decision process, three 
key factors are fundamental to assess windows 
performance: Visual Transmittance (VT), Solar Heat 
Gain Coefficient (SHGC), and U-factor. 

 VT: The fraction of visible portion of 
spectrum transmitted through a window. The 
higher the VT, the more daylight to be 
transmitted to the interior, which may offset 
electric lighting, especially for the spaces 
with a large lighting demand. It has been 
reported that window’s VT ranges from 
above 90% to less than 10%, determined by 
glazing type, number of panes, and glass 
coatings or films (Commercialwindow, 
2016). 

 SHGC: The fraction of incident solar 
radiation transmitted through a window. The 
lower SHGC (which is mainly used in 
cooling-dominated weather), the less solar 
heat gains. One way the low SHGC is 
achieved through low emissivity (Low-E) 
coatings. 

 U-factor: The rate of heat loss of a window 
assembly. The lower the U-factor, the greater 
a window's resistance to heat flow. A low U-
factor can be obtained using double or triple 
panes, air gaps, inert gas fillings, low-e 
coatings, and others.  

The previous work by the authors have been focused 
on the optimization between SHGC and VT based on 
the existing window products (Wang et al., 2016). 
However, that optimization study is limited in hot 
climates due to the strong conflicting relation between 
SHGC (cooling loads) and VT (lighting loads). In 
order to conduct a comprehensive optimization study 
on broad weather conditions, this research work 
involves U-factor into the optimization study. Figure 
1 shows basic correlations among these three variables 
and correlated building loads. The dotted lines 
represent indirect effects of the window’s properties 
on building loads. For instance, internal heat gains due 
to electric lighting in office buildings may result in a 



significant proportion of the total cooling load during 
hot summer months (Lam et al., 1999). In general, 
these three variables are significantly correlated to 
building HVAC loads and lighting loads, but there are 
also other inter-correlations among them. 

 
Figure 1. Correlations of the three factors and 

building loads 

1) SHGC vis-à-vis VT 

There has long been an interest in using Light-Solar-
Gain ratio to analyze the visual properties of glazing 
systems vis-à-vis solar heat gains and energy 
conservation in buildings (McCluney et al., 1993; 
McCluney, 1996). LSG ratio is defined as the ratio 
between VT and SHGC. A high LSG ratio is 
considered as an “ideal” window indicator because, 
while controlling transmitted solar infrared thermal 
radiation, the ideal window should be able to also 
transmit as much visible light as possible, to avoid 
high electrical lighting loads (Correa et al., 2004).  

Among current glazing products, except for the ones 
with spectrally selective coatings, low-SHGC glazing 
types are achieved by adding a tint or traditional low-
e coatings, which also substantially reduce VT values 
(Commercialwindow, 2016). Although spectrally 
selective low-e coatings may slightly increase VT 
under low-SHGC configurations, the VT value still 
decreases somewhat compared with uncoated glazing 
or with other high-SHGC glazing types.  

2) U-factor vis-à-vis VT 

Several techniques can be used to reduce a window’s 
U-factor, such as multiple-pane units with central gap 
filled with various gases, low-e coatings, and 
transparent insulation (e.g. honeycomb materials, 
porous materials). Compared with clear soda-lime 
glass, these techniques normally reduce visible 
transmittance, as light needs to pass through multiple 
transparent layers or coatings. Furthermore, these 
units often have thicker frames which will affect the 
overall window’s VT according to the NFRC rating 
method (NFRC, 2016). Table 1 shows a few typical 
glazing systems’ U-factor (in IS units) and VT (Bliss, 
2006).  

Table 1. Typical glazing U-factors （SI units）
and VT (center of glass) 

Type of glazing U-factor VT 
Single glazing, clear 5.68 0.9 
Double glazing, clear 2.84 0.81 
Double glazing, low-e 1.99 0.75 
Double glazing, low-e, argon 1.65 0.75 
Double glazing, spectrally slective 
low-e, argon 

1.42 0.71 

 

As a consequence, a low U-factor may reduce heating 
and cooling loads but deteriorate daylighting 
performance, which might increase lighting loads, and 
internal heat gains from electrical lights. The 
reduction of SHGC may reduce cooling loads in the 
summer season, but it also has the potential to increase 
heating loads in the winter. The energy efficiency 
effectiveness of selecting different types of window or 
glazing products is then an obvious optimization 
problem, also because it varies with other variables 
such as geographical area, building use, and utility 
rates.  

An approach known as parametric energy simulation 
has been used in similar optimization problems, to 
identify “optimal” building shapes, orientations, 
envelope properties, and other components for 
improving building energy efficiency. The input of 
each variable is varied to assess its effect on design 
objectives, while correlated variables are 
parametrically changed under the user’s definition and 
design constraints (Nguyen et al., 2014). Due to the 
iterative nature of the procedure, these methods are 
often automated by computer programming. The use 
of such methods is known as simulation-based 
optimization, which has become an efficient measure 
to satisfy several stringent requirements of building 
performance (Wang et al, 2005; Fesanghary et al., 
2012; Bambrook et al., 2011; Castro-Lacouture et al., 
2009). Although the scientific literature is vast on 
publications on window or glazing factors influencing 
building energy use, these studies usually analyze 
limited number of window models or hypothesized 
window properties. A systematic research, combining 
measured properties of existing market products with 
a large sample number, has been rarely found. In this 
respect, this paper contributes to existing scientific 
literature in that it brings the actual existing product 
directory from NFRC database into the realm of 
simulation-based optimization studies.  

The aim of this research work is to perform a multiple 
regression analysis of window factors based on the 
large database of existing window products certified 
by NFRC, and subsequently integrate this regression 
model into an EnergyPlus simulation-based 
optimization study, to identify optimal window 
properties for a given location. Three different U.S. 
cities representing different climates were selected for 
this optimization study: Phoenix, AZ; Baltimore, MD; 
and Chicago, IL. This research adopted Pacific 
Northwest National Laboratory (PNNL) commercial 
prototype models (PNNL, 2006), which comply with 
ASHRAE 90.1-2013 standard, as baseline models. 
Building energy use and savings, achieved by 
selecting optimal window properties (VT, SHGC, and 
U-factor) determined by the optimization process, are 
analyzed and compared with baseline models.  

METHOD 
1) Database of Window Products 



NFRC developed a nationally recognized rating and 
labeling system, for the energy performance of 
windows in the U.S., which provides consumers with 
a way to compare the thermal and visual properties of 
windows. Manufacturers who have certified their 
products through the NFRC Certification Program can 
be found in the NFRC Certified Products Directory 
(NFRC, 2014). Through randomly searching and 
downloading window products, we formed a large 
database that covers nearly 8,000 different 
manufacturer product lines and more than 550,000 
NFRC-certified fenestration products. Among the 
properties of each window product, SHGC, VT, U-
factor, and emittance were selected from the dataset. 
Unfortunately, the original NFRC database does not 
directly provide emittance (E) values for each window 
product, but instead offers glazing layer numbers and 
corresponding emittance for each layer (e.g. 0.022(2), 
0.76(3)). E was calculated by Eq. (1).  

 

ܧ ൌ ଵ

ଵ/ாభ	ା	ଵ/ாమ	ା	…	ା	ଵ/ா	–	ሺିଵሻሻ	
	 (1) 

 

Where E is overall emittance, n is number of layers. 

Statistical information on the four variables is 
presented in Table 2. This table also includes the 
calculated LSG values which show a deliberate large 
scatter and ensure that the broadest range of both non-
spectrally selective and spectrally selective glazing 
systems was chosen. SHGC, VT, U-factor (in IS 
units), E, and LSG span 0.02-0.89, 0.01-0.89, 0.51-
6.08, 0.01-0.84, and 0.13-2.46 respectively, indeed 
indicating glazing systems of very diverse properties 
and performance. 

Table 2. Basic statistics of database used in this work 

 SHGC VT U-factor E LSG 
Max 0.89 0.89 6.08 0.84 2.46 
Min 0.02 0.01 0.51 0.01 0.13 
Ave 0.31 0.41 1.70 0.1 1.45 

Median 0.27 0.43 1.65 0.03 1.59 

Figure 2 presents pair-wise relationships between 
the variables of the selected sample dataset. From 
this figure, we can see that both VT and U-factor 
have approximate linear relationship with SHGC, 
and the relationship between E and SHGC is 
quadratic. The correlation matrix of these four 
variables in Table 3 also indicates that SHGC has 
strong associations with the other three values. 
Comparatively, the other three variables are not 
strongly inter-correlated (except for the relationship 
between E and U-factor).  

Table 3. Correlation matrix of the four variables  

 SHGC VT E U-factor 
SHGC 1 0.71 0.50 0.40 
VT 0.71 1 0.11 0.075 
E 0.50 0.11 1 0.72 
U-factor 0.40 0.075 0.72 1 

Based on these results, we built several regression 
models by taking SHGC as response (dependent 
variable), and the other three as predictors 
(independent variable), which forms ܵܥܩܪ ൌ
݂ሺܸܶ, ܷ, ሻܧ . The process of determining the 
coefficients of regression models for an equation is 
known as training the model. For this research, a 
stepwise search algorithm was developed for 
parameter optimization. A selected set of values of the 
parameter was supplied to the algorithm. Finally, the 
parameter that yielded the maximum accuracy was 
selected. The statistical index used to evaluate the 
accuracy of the generated models was Mean Squared 
Prediction Error (MSPE).  
 
ܧܲܵܯ ൌ 	ܥܩܪܵ	݀݁ݐܿ݅݀݁ݎሼሺ݁ݒܽ െ
 ሻଶሽ                                                  (2)ܥܩܪܵ	݈ܽݑݐܿܽ
 

2) Reference Models and Simulation Inputs 

The U.S. Department of Energy (DOE), in 
conjunction with three of its national laboratories, 
developed commercial reference buildings, formerly 
known as commercial building benchmark models. 
These reference buildings play a critical role in the 
program’s energy modeling software research by 
providing complete descriptions for whole building 
energy analysis using EnergyPlus simulation 
software. In this study, we adopted the small office 
building model (Figure 3) simulated for the three 
representative cities mentioned above. This reference 
model for each city was generated by PNNL and 
complies with ASHRAE 90.1-2013 energy efficiency 
standard, the latest available version. Table 4 shows 
the basic information of the selected reference models. 

 

 

 

 

 

 

Figure 3. PNNL prototypical office model  

Table 4. Basic information of the reference models 

 



3) Optimization Approach 

In the field of simulation-based optimization, Genetic 
Algorithms (GA) have attracted much research 
interest in sustainable building design and have been 
used to search the best design options of a building in 
the Mediterranean area (Znouda et al., 2007), the 
optimal conceptual design settings for life cycle cost 
and energy (Wang et al., 2005), the optimal external 
venetian blinds and overhangs for both energy and 
daylighting distribution (Manzan, 2014.), and other 
design goals. The optimization software used was 
GENE_ARCH, which uses EnergyPlus (version 8.0) 
as its simulation engine, and Pareto Genetic 
Algorithms for multi-objective optimization (Caldas, 
2008). GENE_ARCH was developed to help 
architects in the creation of energy-efficient and 
sustainable architectural solutions, by using goal-
oriented or inverse design, a method that allows the 
user to set building performance goals and have the 
software search a given design space for architectural 
solutions that respond to those requirements (Caldas 
et al., 2003).  

This study did not apply Pareto optimization but a 
single fitness value. The objective used was 
minimizing annual energy consumption, including 
spacing heating, cooling, ventilating, and lighting 
loads. Based on our assumption, SHGC, U-factor and 
VT are in conflict with each other in terms of heating 
and cooling loads, and lighting loads. With the 
exception of SHGC, U-factors, and VT of windows, 
all other properties and components of the existing 

reference models remain unchanged. This ensures that 
the optimal combination of SHGC, U-factor, and VT 
can be identified. 

In the GENE_ARCH interface, both VT, U-factor, and 
E were set as independent variables. Although their 
discretization is determined by the user, their actual 
value is automatically generated by GENE_ARCH; 
SHGC was a dependent variable, resulting from the 
regression equation: ܥܩܪܵ	 ൌ ݂ሺܸܶ, ܷ, ሻܧ . The 
values generated for each variable were then used to 
guide different window selections. The optimal 
window properties identified by GENE_ARCH, and 
corresponding energy use (HVAC and lighting loads), 
were then compared with the original reference 
models. 

RESULTS 
1) Multiple Regression Model 
Based upon the aforementioned methods, we firstly 
built the following five regression models. Among 
these five models, Model A is the simplest one, which 
has linear terms. The most complicated model we 
considered in our analysis is Model E, which includes 
all the quadratic terms and intersections.  

Model A:    ܵܥܩܪ ൌ ߚ  ଵܸܶߚ  ܧ	ଶߚ  ଷܷߚ   ߝ
Model B:    ܵܥܩܪ ൌ ߚ  ଵܸܶߚ  ܧ	ଶߚ  ଷܷߚ 
ଶܧ	ଶߚ    ߝ
Model C:     ܵܥܩܪ ൌ ߚ  ଵܸܶߚ  ܧ	ଶߚ  ଷܷߚ 
ଶܧ	ସߚ  ହܸܶߚ ∗ ܧ	   ߝ
Model D:    ܵܥܩܪ ൌ ߚ  ଵܸܶߚ  ܧ	ଶߚ  ଷܷߚ 
ଶܧ	ସߚ  ହܸܶߚ ∗ ܧ	  ܸܶଶ	ߚ   ߝ

Figure 2. Pair-wise relationships between the variables 



Model E:    ܵܥܩܪ ൌ ߚ  ଵܸܶߚ  ܧ	ଶߚ  ଷܷߚ 
ଶܧ	ସߚ  ହܸܶߚ ∗ ܧ	  ܸܶଶ	ߚ  ܸܶߚ	 ∗ ܷ  ܧ଼ߚ ∗
ܷ  ଶܷ	଼ߚ   ߝ
The following step was to randomly divide the whole 
dataset, which has 555,383 samples, into three parts: 
training set, validation set, and test set. We randomly 
chose 50% (277,692 samples) of the dataset as the 
training set, which was used to fit the model, 25% 
(138,846 samples) as the validation set, which was 
used to calculate Mean Squared Prediction Error 
(MSPE) for model selection, and the remaining 25% 
part (138,845 samples) as the test set, which was used 
for the assessment of the model. After that, we used 
the training set to fit these models, and used the 
validation set to find the MSPE for each model, as 
shown in Table 5. Even though Model D and Model E 
are more complex than Model C, they do not have a 
better performance in prediction. Thus, Model C was 
selected as the final model.  

Table 5. Summary of the five regression models 
Model A B C D E 
MSPE 0.0038 0.0024 0.0023 0.0023 0.0023 

 

The fitted function for Model C is:  

ܥܩܪܵ ൌ 0.023  0.44 ∗ ܸܶ  1.88 ∗ ܧ	  0.002 ∗
ܷ െ 2.38 ∗ ଶܧ	  0.28 ∗ ܸܶ ∗  (3)                             ܧ	

The R-Square of the above model is 0.81, which 
means 81 percent of variability in SHGC can be 
explained using these three predictors. We also tested 
the accuracy of the final model. As shown in Figure 3, 
the goodness of fit for the training and testing data of 
the final model is graphically illustrated in the left and 
right plots, respectively. Data points are in general 
very close to the red line, which is the locus where 
there is no error between the predicted and the actual 
values, showing a quite accurate fit for the model. 
Moreover, the scatter of data points is almost similar 
in both plots in Figure 4. Therefore, it can be inferred 
that the model does not suffer from problems of under 
fitting or over fitting (both over and under fitting lead 
to poor predictions on test data sets). 

 
Figure 4. Fit goodness for the training data (left) and 

testing data (right) 
 
2) Optimal Window Selection and Energy Results 
The above multivariate regression model ܵܥܩܪ ൌ
݂ሺܸܶ, ܷ,  .ሻ was then integrated into GENE_ARCHܧ
The algorithm was run for 200 generations; the 
population size was 25 individuals, with a total of 
5,000 simulations for each city. Optimal window 

settings were identified, as shown in relation to the 
original window properties in the reference models in 
Table 6.  

Table 6. GENE_ARCH optimized window properties 
in relation to reference values 

 Reference Models Optimized Models 
 VT SHGC U VT SHGC U 
Miami 0.28 0.23 3.52 0.20 0.14 1.14 
Memphis 0.28 0.23 3.18 0.48 0.24 0.85 
Chicago 0.28 0.22 2.38 0.52 0.26 0.79 

Figure 5 presents HVAC and lighting energy use for 
the optimal window VT and SHGC values for each 
city, and compares their energy use with the three 
reference models. Energy savings range between 
~7.1-8.2GJ for the selected office model. As expected, 
energy savings happen in these three cities, where the 
optimized VT, U, and SHGC factors are obviously 
away from the standard values. Mixed climate 
conditions in Chicago and Memphis achieved slightly 
higher energy savings compared with hot climate 
conditions in Miami. It also can be seen from this 
figure that the electrical lighting energy savings by 
increasing window’s VT were not as high as what we 
expected. The main reasons are two-fold: one is 
related to the value of “% Zone covered by Lighting 
Sensor Area”, which is only ~24% percentage in the 
DOE prototypical reference models. This can 
significantly reduce the utilization of daylight. 
Another reason is involved in lighting control schemes 
which are set as “Stepped” in all reference models. 
Compared with continuous lighting control with 
dimming electrical lights, stepped control modes using 
discrete blocks can adversely dampen the daylighting 
effects. However, since the objective of this research 
is to demonstrate our proposed simulation-based 
optimization method based on existing window 
products, an accurate comparison between optimized 
window factors and standard window factors in 
reference models was essential. Thereby, we adopted 
the same settings of lighting sensor zone percentage 
and control modes in our optimized models. The 
further savings by manipulating these settings will be 
focus of future research work.  

Finally, we searched the identified optimal VT, U-
factor, and SHGC values in the original database of 
the NFRC certified product directory, and a few 
window products with similar properties were easily 
confirmed as existing glazing products available in the 
market. 

CONCLUSION 
We conducted a GA optimization study to seek best 
VT and SHGC window properties for three different 
US cities. The database of NFRC certified products 
was used to generate a multivariate regression model 
which was subsequently used as input into 
GENE_ARCH for optimization. Resulting 
combinations of VT, U-factor, and SHGC were 



compared with reference models that meet ASHRAE 
90.1-2013.  

Research findings based on a small office model 
indicate apparent energy savings by the selection of 
optimal window properties. As discussed, in this work 
we adopted the same lighting control scheme and 
lighting sensor controlled area that exist in the 
reference models, which technically decrease the 
daylighting effects on building lighting loads. 
Furthermore, the building typology used, with small 
window openings and internal electrical lighting 
requirements, can also degrade the resulting energy 
savings. Higher energy savings may be found for 
buildings with large fenestration areas and high 
electrical lighting demands. Future work will be 
conducted for different building types and daylighting 
control methods. Also, the comparisons to other 
optimization tools, such as JEPlus and EA will be 
conducted. 
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