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ABSTRACT

Incoming solar radiation is a key factor influencing solar architecture design. It determines the thermal
and optical regime of the building envelope and affects the solar heat and light transfer between the
indoors and outdoors. Computational analysis is an essential tool in solar architecture design. Usually, an
entire year’s weather data in a conventional weather file can be imported into such computational an-
alyses. Solar irradiance data used in a conventional solar architecture design analytics are broadband (the
total of UV, VIS, and NIR); however, these three components play different roles in building energy ef-
ficiency. So, analyzing individual solar components separately can be desirable. This research is to
develop estimation models of the VIS and NIR components that can be captured efficiently from readily
available datasets collected from the ground weather stations; such a model can then be conveniently
implemented into current solar architecture design and research. We explored and tested classification-
based modeling methods for decomposing hourly broadband global horizontal solar irradiance data in
conventional weather files into hourly global horizontal solar VIS and NIR components. Furthermore, a
workflow of how to implement these models in solar architecture design and analysis has been devel-
oped and discussed herein.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Solar architecture is an architectural approach that makes the
best possible use of locally available solar energy by employing
both passive and active measures [1]. The first solar architecture in
America was proposed by Tod Neubauer in the 1950s [2]. Research
in this field has addressed the theoretical background, simulation
techniques, and experimental testing. Computational analysis in
solar architecture design has been described and discussed widely
in recent decades [3]. Usually an entire year’s weather data are
imported in a conventional format (e.g., TMY, WYEC2 BLAST) into
an energy simulation program to calculate the energy consumption
of a building. Solar irradiance data in a complete weather file also
include global horizontal irradiation (GHI), diffuse horizontal irra-
diation (DHI), and direct normal irradiation (DNI). Regardless of the
three solar irradiance types noted above, the solar irradiance data
are broadband and represent the total of ultraviolet (UV), visible
light (VIS), and near-infrared radiation (NIR), three components of
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the solar spectrum.

With two known solar data variables, the other variable can be
calculated via the mathematical relations among them. However,
these three components play different roles in solar architecture
design. Of these three major components, VIS always provides
benefits to indoor building energy savings (e.g., electrical lighting),
while solar NIR is beneficial to building energy savings in winter but
undesirable in summer [4]. Similarly, the COVID-19 pandemic has
heightened interest in the solar UV component and its potential
impact on the spread and seasonality of disease. Therefore, in some
in-depth building environment performance analyses, especially
building energy simulation work, separate analyses focusing on
each solar radiation component are desirable. With recent discov-
eries and engineering solutions emerging related to nanomaterials
and nanostructures, independent band modulation of solar radia-
tion on building envelopes (including glazing systems) has become
increasingly viable as a potential means of improving building
energy savings and indoor visual comfort. However, the meteoro-
logical data in conventional weather files do not normally include
the spectral power distribution data of incident solar light because
measuring the narrowband spectral distribution of sunlight is
much more difficult and expensive than measuring broadband
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radiation (e.g., using pyranometers). As a consequence, there is a
pressing need for reliable performance estimations of spectral solar
radiation control and response on a building scale. To assess this,
we need solar spectral irradiance source data, or at least band (i.e.,
VIS and NIR) solar irradiance data as input.

To address this research gap and the practical need for solar
architecture design, this work has developed an estimation model
for VIS and NIR components that can be captured efficiently from
readily available datasets without the addition of new measure-
ments and associated sensors; this can then be conveniently
implemented into current solar architecture design and research. In
particular, several research questions have been answered,
including how to yield a reliable model with readily available
weather data such as dew point temperature, relative humidity,
and broadband solar irradiance information; how the first princi-
ples of solar radiation and building physics domains should be
combined, and what new (readily available) parameters can be
incorporated to facilitate the modeling procedure; and how to
simplify the manipulation process for building energy modelers to
apply new models in energy simulations. In this research, we
explored and tested classification-based modeling methods for
decomposing hourly broadband global horizontal solar irradiance
data in conventional weather files into hourly global horizontal
solar VIS and NIR components, yielding two accurate models of the
VIS and NIR fractions of the overall solar irradiance (or GHI).
Furthermore, a data conversion workflow of how to implement this
in solar architecture design and analysis processes was developed
and is described herein. The methodology established in this work
presents a new, efficient, and accurate method based on readily
available weather data documented in conventional weather files,
enabling more comprehensive and precise building energy and
performance-related analyses, especially with respect to building
elements and products that have features of spectral selectivity. The
uniqueness of this model is that the model development in this
work is targeting the solar system application or passive solar
strategies in building engineering and energy efficiency, so the
solar spectral bands defined in this work are consistent with the
requirements in solar architecture design and analysis. Another
novelty is that we only used the most basic meteorological ele-
ments, such as humidity, temperature, etc., which are normally
documented in ground weather stations, combined with several
new parameters based on solar radiation physics. This could sup-
port an ease-of-manipulation for building simulation by using
conventional weather files in the architecture, construction, and
engineering industry.

2. Related work

Different spectral irradiance models have been proposed since
the 1940s. Moon'’s spectral radiation curve [5], Leckner’s model [6],
Brine and Igbal’'s model [7], and SOLAR2000 [8] are empirical
models based on an understanding of solar spectral irradiance
combined with historically measured weather and other solar
irradiance data. The BRITE and FLASH [9], LOWTRAN 7 [10],
MODTRAN 6 [11], SEA [12], and SOLMOD models [13] consider the
physical characteristics of the atmosphere and use references or
measured vertical profiles of gaseous and aerosol constituents;
they are typically rigorous and sophisticated codes. The National
Renewable Energy Laboratory (NREL) provides the Bird Simple
Spectral Model (SPCTRAL2) [14] and the SMARTS model [15] that
simplify the atmosphere’s vertical profile and facilitate solar tech-
nology integration. Reconstruction models usually model solar
spectral irradiance variability by a linear combination of indicators
of solar activity [16]. Although these spectral irradiance models are
available and effective for the estimation of detailed spectra, the

669

Renewable Energy 165 (2021) 668—677

approaches and resultant models are not suitable for building en-
ergy efficiency analysis due to wavelength range limitations, the
need for additional measurement and data input, implementation
complexities, etc. [17].

A relatively simpler method of integrating solar spectra into
application areas is to develop models of major solar spectral
components such as solar UV, VIS, and NIR irradiance. Most pre-
vious studies on this topic have determined simple representative
fractions for VIS and NIR. Comparatively, NIR/GHI has been less
frequently investigated than VIS/GHI. The NIR/GHI fraction was
reportedly around 46.5% in Brazil and 51.8% on the Tibetan plateau
[18,19]. Some studies have argued that these fractions could vary
significantly in different weather and atmospheric situations. For
instance, Szeicz verified that ratio of the visible energy to the total
received by the photosynthetically active part of the spectrum 0.5 is
a better general approximation according to a theoretical model
and an experiment, his study indicated the VIS/GHI fraction is
closely associated with two factors: the presence of clouds and
scattering caused by aerosol [20]. The NIR/GHI fraction is closely
related to the total amount of column water vapor [21]. Few studies
have attempted to developed regression models of these fractions.
The most representative work was done by Escobedo et al., who
established monthly and hourly fraction models for the UV, VIS, and
NIR solar components in Brazil [21]. In that work, they have found
that the clearness index (ratio of the global-to-extraterrestrial solar
radiation) of sky conditions can be a determinant factor to develop
the simple linear regression models for the hourly and daily fac-
tions of UV and GHI [21]. Comparatively, the linear regression
models derived to estimate the NIR and VIS components may be
obtained without sky condition conditions. However, it is worth
mentioning that the developed linear regression models in that
work were based on the specific variations or features of the sky
condition in the selected site, which was with a maximum variation
of 8%. In other words, the models may not be effective for other
situations with larger sky variations. Another characteristic
research done by Charuchittipan et al. was to estimate the diffuse
NIR radiation from satellite- and ground-based data including
atmospherical reflectivity, precipitable water, relative humidity,
and air temperature. This semi-empirical model is in reasonable
agreement with independent diffuse NIR data, giving an RMSD and
MBD of 16.7% and 1.5%, respectively [22]. The satellite data are
necessary for the estimation in this model, which seems suitable to
the mapping application purposes, presenting NIR data on satellite
images. However, such satellite data are not typically available or
utilized in the domain of solar buildings. Similar regression
modeling works using ground and/or satellite measurements were
also conducted by other researchers [23—30], but most of these
works focus on the VIS part of solar radiation and the agriculture
applications.

In summary, in these prior studies, we understand that various
atmospheric variables including clearness index, water vapor
pressure, ozone column, aerosol optical depth, air relative humid-
ity, etc. may significantly affect these spectral components; how-
ever, they are not always available in typical weather files complied
from the measurements in ground weather stations. Meanwhile, it
is consistent among the above works that the sky clearness index
plays a very significant role in classifying the UV, VIS, and NIR solar
components, providing a valuable foundation for our work. As
mentioned above, the objectives of this work are different from
these previous studies in two key aspects. First, the model devel-
opment in this work is targeting the solar system application or
passive solar strategies in building engineering and energy effi-
ciency, so that the spectral band coverages are not exactly the same
with the ones in the previous works focusing on agriculture,
forestry, oceanography, or general atmospherical studies. Second,
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this work aims to achieve an ease-of-manipulation for building
simulation purposes by using basic meteorological elements
collected in typical ground weather stations and used in conven-
tional weather files in the architecture, construction, and engi-
neering industry. Such concerns have to date not been addressed.

3. Methodology

Fig. 1 shows the research framework and workflow of this study.
It illustrates that we first built a precise estimation modeling of VIS
and NIR components from hourly global solar radiation and hourly
meteorological parameters. This procedure consisted of five major
steps from data collection to processing, cleaning, classification,
regression trees (CART) technique application for modeling, and
model validation. After validation of the developed solar spectral
models, we proposed and designed a workflow to introduce how to
incorporate the models into solar architecture design and analysis.
Next, we will provide the details of each step shown in this
diagram.

3.1. Data collection

Two major datasets, hourly meteorological measurements
(HMM) and outdoor solar spectra data (WISER), in the location
(Latitude: 39.742° North, Longitude: 105.18° West, Elevation:
1828.8 m AMSL) were selected from the SRRL BMS database of the
NREL Solar Radiation Research Laboratory for the modeling done in
this study [31]. The HMM dataset was used to retrieve and process
the independent variables, including GHI, DNI, DH], cloud coverage,
dry-bulb temperature, dewpoint, relative humidity, and wind
speed, while the key dependent variables (i.e., solar VIS and NIR
irradiance) were calculated from the WISER dataset [31].

The HMM dataset for 2018 and 2019 was used in this project. It
describes the basic solar radiation and meteorological elements
with hourly timestamps, which has identical variable types and
formats with the TMY weather file. Building upon this TMY format-
compliant dataset enables us to perform the conversion from the
hourly broadband solar irradiance to spectral components based on
typical weather files in the future. Note that the average value of all
measured points each hour is defined as the value for the time-
stamp at the end of the 1-h interval [32]. For example, the value at
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timestamp 08:00 in the HMM dataset equals the average value of
all measurements taken from 07:00 to 08:00. This dataset is well-
organized and has been used widely to simulate the solar radia-
tion and building energy performance in the architecture, engi-
neering, and construction industries.

The WISER measurement database is formed from two spec-
troradiometers (i.e.,, MS-711 and MS-712) that are combined to
measure global horizontal spectral solar irradiance data [31]. MS-
711 covers the measurement range from 300 nm to 1100 nm, and
MS-712 focuses on the NIR range from 900 nm to 1700 nm [31]. We
selected data from the same period: 2018 and 2019. The WISER
database has a higher resolution measurement for both wave-
lengths (0.41 nm and 1.6 nm resolutions for the MS-711 and MS-
712, respectively) and time intervals (typically 5 min, but occa-
sionally 1 min). To coordinate these two solar datasets from
different sources, the 5-min interval data were processed using R
software. The hourly spectrum data were calculated by averaging
the 5-min interval data for each hour, following the criterion of
timestamp calculation regulated in the HMM dataset. The day-of-
year time format was also modified to fit the time format of UTC
(Coordinated Universal Time), as it was the same format used in the
HMM.

3.2. Data processing

First, to obtain the solar VIS and NIR components, we summed
the spectral data for the corresponding wavelength ranges of
380 nm—780 nm and 781 nm to 1700 nm for VIS and NIR,
respectively, based on the International Standards Organization’s
spectral band definitions [33] and the spectroradiometer mea-
surement ranges in this work. We obtained the fractions of VIS/GHI
and NIR/GHI by using the VIS and NIR values calculated from the
WISER dataset and GHI values calculated from the HMM dataset.

Second, to potentially enhance modeling accuracy, we gener-
ated several additional predictor variables. The primary principles
applied when adding these predictors were obtained from the
knowledge and theory of solar radiation and building physics, with
a focus on calculations that did not require new sensors and mea-
surements and demanded a minimum amount of computation.

1) Extraterrestrial solar radiation Iy

Needs of Spectral Solar Components for Emerging Solar Building Design/Engineering
Broadband solar data

Decompose broadband
solar data into fractions —
VIS/GHI and NIR/GHI

Data modeling procedure —

Data collection

—  Data processing {

— Data cleaning ™~

Conventional meteorological data
Solar spectral data
Extract / process basic predictors
Propose new predictor variables

—  Missing values and outliers

Erroneous values

CART model —] NIR/GHI model
Workflow of model developmentinR VIS/GHI model
incorporation in solar S
architecture design and L Model validation | Cross-validation errors
engineering — RMSE and MAE

Fig. 1. Research framework and workflow.
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The hourly average extraterrestrial solar radiation on the hori-
zontal surface Iy is determined using the following Equation [34].

(1)

where I, is a solar constant (1367 W/mz), Rgy is the mean Sun-Earth
distance, and R is the actual Sun-Earth distance depending on the
day of the year. An approximate equation for the effect of the Sun-
Earth distance is:

Iy =Isc(Ray/R)?

(Rav/R)®> =1.00011 + 0.034221 cos(8) + 0.001280 sin(8)
+0.000719 cos(26) + 0.000077sin(20)

where § = 27n/365 radians and n is the day of the year.
2) Solar zenith angle ¢

The solar zenith angle ¢ is the angle between the solar and the
vertical. We used AstroCalc4R, developed by Jacobson et al. in R
statistical software, to calculate the solar zenith angles based on
latitude, longitude, time of day, and date [35].

3) Clearness index K;

The clearness index K; is the ratio of the horizontal global irra-
diance to the corresponding irradiance available outside the at-
mosphere. It may be considered an attenuation factor of the
atmosphere and can be calculated by the following Equation [36].

GHI
K= cos®

(2)

where GHI is the horizontal global irradiance, I is extraterrestrial
solar radiation on the horizontal surface, and { is the solar zenith
angle.

4) Cloud transmittance Ty
We formed a new parametric cloud transmittance T4 based on

our understanding of the physical behavior of solar irradiance
transmission. T4, defined as:

(1= 0.1Topg) (1 — 0.1Tor + 0.1Topq)

Teia = 1—0.05Tsor
(1= 0.1Topg) (1 — 0.1Tgrp) 3)
- 1-0.05Tsor

where Typq is the opaque sky cover transmittance, Ty is the total
sky cover transmittance, and Ty is the translucent sky cover
transmittance Tgn = Tror — Topg.

5) Air mass AM

The relative air mass AM was given by Kasten as [14].

1

AM =
cos({) +0.15(93.885 — )~ 1223

3.3. Data cleaning

After building up the datasets, including the original date,
calculated data, and additional data described above, the quality of
the raw data was enhanced by a data cleaning process that filtered
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it for any uncertainties or errors [37]. The following requirements
were taken into account for quality control of the datasets:

1) If there were missing data regarding global horizontal solar ra-
diation, diffuse horizontal solar radiation, pressure, relative
humidity, or dew and/or dry bulb temperatures, such data for
that hour were omitted.

2) If the ratios of NIR/GHI or VIS/GHI were greater than 1, the
corresponding data entries were omitted.

3) The clearness index K; was calculated and if the solar zenith {
was greater than 85.5°, the corresponding data were dis-
regarded [38].

4) If the GHI was smaller than 50 W/m?, the corresponding data
were disregarded.

After the above data cleaning process, the finalized dataset
included 7583 observations.

3.4. Classification method

Classification and regression trees (i.e., CART) are a simple but
powerful technique for modeling. Unlike the generalized linear
regression model (GLM) that typically pre-specifies and tests the
relationship between the response and predictor, CART does not
develop a prediction relationship. It constructs a set of decision
rules for the predictor variables [39]. The data are partitioned along
the predictor axes into subsets with homogeneous values for the
dependent variable. The best split is chosen for all of the predictors
by an exhaustive search procedure. An analysis of variance
(ANOVA) is conducted to select the splits, which maximizes the
homogeneity of the two resulting groups with respect to the
response variable. The output is a tree diagram with the branches
determined by the splitting rules and a series of terminal nodes
that contain the mean response. The procedure initially grows full
trees and then uses a cross-validation process to prune the over-
fitted tree to an optimal size [40]. CART modeling has several dis-
advantages compared to conventional regression modeling,
including it being very close to a simple linear relationship when
the size of the tree is small; also, the predictions are unstable due to
high variance single regression trees. That is, small changes in data
can produce substantially different trees [41]. However, CART
analysis also has clear advantages over classical statistical methods,
effectively uncovering structures in data with hierarchical or
nonadditive variables. CART also provides the possibility of in-
teractions and nonlinearities among variables and has been found
to be very interpretable. It also makes it easy to understand a var-
iable’s importance in making predictions, and is quick to use
because there are no complicated calculations [42]. Such methods
have been useful in solar radiation modeling applications, including
both prediction and estimation [43—45].

3.5. Tree selection

CART uses a technique known as binary recursive partitioning
and outputs four indicators: the complexity parameter cp, relative
error rel error, cross-validation error xerror, and standard error xstd.
The rel error is the ratio of the sum of the squared differences of the
observed and predicted values and the original variance. The in-
dicator rel error is the observations, while xerror and xstd are errors
from cross-validation of the data [39,46]. The indicator xerror is
related to the predictive residual sum of squares (PRESS) statistic. If
it is assumed that the dataset is partitioned into i regions (R;), the
actual response is y; and the predicted constant is c;, so the residual
sum of square error SSE of the subtrees can be expressed as:
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SSE=>"(y; — ¢;)? (5)

ieR;

The xerror indicator is the SSE from the cross-validation data.
The cp indicator is illustrated below.

Employing these indicators, two methods are normally used to
assess and select the tree structure and avoid overfitting the data.

1) Minimal cost complexity method

In a simple ANOVA, the objective at each node is to minimize the
SSE or maximize the between-group sum-of-squares. However,
minimizing the SSE is not a good measure for selecting a subtree
because it always prefers a bigger tree. The complexity parameter
cp, tree size T, and SSE of the tree with no splits (SSE(T7)) is then
used as a penalty term to measure the cost complexity of the tree;
the objective function for pruning the tree is shown in Equation (6).
If cp = 0, then the biggest tree will be chosen because the
complexity penalty term is essentially dropped. As cp approaches
infinity, the Size 1 tree will be selected.

minimize{SSE(T) +cp - |T| - SSE(T1)} (6)

The optimal size of the tree is the fewest branches that still
minimize all errors. Typically, we evaluate multiple models across a
spectrum of cp and use cross-validation to identify the optimal size,
and thus the optimal subtree that best generalizes to the data. If the
cost of adding another variable to the decision tree of the current
node is above the threshold, then tree building does not continue
and the threshold of complexity parameter cp is reported.

2) One-standard-error (1-SE) rule

An alternative rule for post-pruning the tree model is the one-
standard-error (1-SE) rule. The 1-SE rule is based on cross-
validation estimates of the error of the subtrees in the initially
grown tree, together with the xstd of these estimates. This uses the
first level where the xerror falls into the +1 xstd range of min
(xerror) that is calculated based on a defined cp (e.g., 0.01), which is
expressed as follows:

xerror < min(xerror) + xstd

The level at which the xerror is at or below horizontal is dis-
played as a red dotted line in the cross-validation error plots. Then,
the simplest model (i.e., the smallest tree size) is chosen. This
method takes into account the variability of xerror resulting from
cross-validation because in most practices, the plot of xerror has an
initially sharp drop, followed by a relatively flat plateau and then a
slow rise. In other words, the minimum cross-validation error rate
is no guarantee that the cross-validation error is a random quantity.

4. Results and discussion

In this study, we used the rpart package in R software to build
regression trees for VIS/GHI and NIR/GHI. We split the entire
dataset D into a training dataset (90% of D) and a test dataset (10% of
D). The rpart implementation first fit a fully grown tree onto the
training dataset with N terminal nodes. Then, it pruned the fully
grown tree by k-fold cross-validation (default k = 10).

4.1. CART results for the VIS/GHI fraction

1) Cross-validation error plot

Renewable Energy 165 (2021) 668—677

Fig. 2 shows the cross-validation error plot for the VIS/GHI tree.
The vertical axis represents the relative cross-validation
SSE(xerror). From this figure, we can see that when cp = 0.014,
the Size 7 regression tree has the minimum cross-validation error.
This tree model is shown in Fig. 3. The red dotted line in Fig. 2 refers
to where the cross-validation error is just smaller than the sum of
the minimum cross-validation relative estimates error xerror and
the cross-validation standard error xstd at that tree (i.e., the 1-SE
rule).

The CART procedure generated a regression tree with a mini-
mum cross-validation error containing seven terminal nodes for
VIS/GHI (see Fig. 3). The fraction of VIS/GHI ranged from 0.287 to
0.609 in these seven groups, among which the fraction 0.547 rep-
resented the major (33.5%) training observations that belonged to
that node. Comparatively, the visible solar radiation occupies about
49% (or 0.49) extraterrestrial solar radiation. So, in other words, the
fraction, VIS/GHI, should tend to 0.49 when the sky condition is
clear. On the contrary, under the cloudy situation, water vapor in
the Earth’s atmosphere may significantly absorb the sunlight,
especially in the infrared region, which leads to a relatively higher
fraction of visible solar radiation. The tree result in Fig. 3 confirms
these physical explanations and shows that the first variable
selected for splitting was the clearness index K;. If K; < 0.415, the
group was further split according to RH and Dew. In the other major
branch of this regression tree, if K; > 0.415, the parameters of RH
and Dew were also used to form the groups further. The fractions in
the low K; regions were relatively larger than the ones in the
high K; regions. In the meanwhile, both RH and Dew were found
significant to determine the terminal tree nodes in the two major
branches, which also complies with the fact that the content of
water in the air plays an essential role to affect the fractions of.
VIS/GHI.

The red dotted line in Fig. 2 represents the highest cross-
validation error minus the minimum cross-validation relative es-
timates error xerror, plus the cross-validation standard error xstd at
that tree (via the 1-SE rule). A reasonable choice of cp for pruning is
often the leftmost value, where the mean is less than the horizontal
line. As shown in Fig. 4, in this case, the optimal size of the tree
contained only three terminal nodes for VIS/GHI. The percentage of
VIS/GHI ranged from 26.3% to 40.2% in these three groups. The first
variable selected for splitting was the clearness index K;. If K; <
0.415, no further split was observed for Group 1: 26.3% of VIS/GHI
data, with a mean value of 0.567. If K; > 0.415, the group was
further split according to Dew < -1.05°C (Group 2: 40.2% of VIS/GHI

Cross-Validation Error Plot for VIS/GHI Tree

size of free

1.0

X-val Relative Error
09
1

0.7

Inf 0.071 0.037 0.025 0.02 0.014
cp

Fig. 2. Cross-validation error plot for the VIS/GHI tree.

2) Regression tree with minimum cross-validation error
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Regression Tree for VIS/GHI
0.544
100.0%
0535 (yesHKt >= 0.415 0567
73.7% 6.3%
0526 Dew<-1.05 0564 RH <93
40.2% 24.3%

0513, Kt>=0.824 Dew >=15.4
13.0%
RH>=74.4
0.516 0.531 0.547 0.565
12.9% 7.2% 3.5% 4.2%

Fig. 3. Regression tree model for VIS/GHI.

3) Regression tree with the 1-SE rule

Regression Tree for VIS/GHI

0.544
100.0%

Kt >= 0.415-{no}——

0.567
26.3%

0.547
33.5%
Fig. 4. Pruned regression tree model for VIS/GHIL.

data, with a mean value of 0.526) or Dew > -1.05°C (Group 3: 33.5%
of VIS/GHI data, with a mean value of 0.547). Similarly, the fraction
values’ differences depending on the sky clearness levels can still be
found in this resultant tree. Furthermore, although both parame-
ters - dewpoint temperature and relative humidity are related to
the water content in the air, the result demonstrated that the Dew
parameter seemed more determinant to estimate VIS/ GHI.

4.2. CART results for the NIR/GHI fraction
1) Cross-validation error plot

Fig. 5 shows the cross-validation error plot for the NIR/ GHI tree.
From this figure, we can see that when cp = 0.01, the Size 10
regression tree has the minimum cross-validation error. This tree
model is shown in Fig. 6.

The CART procedure generated a tree containing 10 terminal
nodes for NIR/GHI (see Fig. 6). The fraction of NIR/GHI ranged from
0.358 to 0.743 in these ten groups, among which the fraction 0.414
represented the primary (33.5%) training observations that
belonged to that node. As discussed above, the sky clearness con-
ditions, or cloudiness situations, are important to affect the trans-
mitted solar radiation features in terms of the visible and infrared
components through the atmospherical layer. Therefore, we could
find a similar but reversal relationship in the regression tree for
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Cross-Validation Error Plot for NIR/GHI Tree

size of free
1 2 3 5 6 7 8 9
L 1 1 1 1 1 1 1 J

1.1

:° | .

[1'4

T 3 | | 1
2] R e e e

T T T T T T T T T
Inf 0079 0037 0026 0019 0013 0011 0.01 0.01
cp

Fig. 5. Cross-validation error plot for the NIR/GHI tree.

2) Regression tree with minimum cross-validation error

(The red dotted line refers to the simplest tree, following the 1-SE rule). . (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 6. Regression tree model for NIR/GHI.

Dry >=.9.55

3) Regression tree with the 1-SE rule

NIR/GHI. The clearness index K; was still the most determinant
parameter selected by the CART procedure, while most higher
fractions NIR/GHI existed in the higher K; regions because less
near-infrared solar radiation was absorbed by the atmosphere in
such situations. However, compared to the regression tree VIS/GHI,
the regression tree for NIR/GHI seemed more complicated. On the
one hand, a more scattered percentage could be found in the ter-
minal nodes. On the other hand, more predictors were involved in
the pruned regression tree model. In addition to RH and Dew, dry
bulb temperature Dry, diffused horizontal solar irradiance DHI, and
cloud transmittance T4 that was newly proposed in this work were
used to form the terminal groups.

The dashed red line in Fig. 5 shows the position of the 1-SE rule
with the minimum xerror + xstd; Fig. 7 shows that the pruned tree
using the 1-SE rule for NIR/GHI contained three terminal nodes. The
percentage of NIR/GHI ranged from 26.3% to 40.2% in these three
groups. The first variable selected for splitting was the clearness
index K;. If K < 0.415, no further split was observed for Group 1:
26.3% of NIR/GHI, with a mean value of 0.389. If K; > 0.415, the
group was further split according to Dew > -1.05°C (Group 2: 33.5%
of NIR/GHI, with a mean value of 0.414) or Dew < -1.05°C (Group 3:
40.2% of NIR/GHI, with a mean value of 0.438). In this model, K; and
Dew are important parameters used to estimate NIR/GHI, which is
consistent with the regression tree for the visible component.

4.3. Estimation performance evaluation

The resultant tree models in Figs. 3 and 4 and Figs. 6 and 7 are
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Fig. 7. Pruned regression tree model for NIR/GHI.

0.389
26.3%

named Model 1, Model 2, Model 3, and Model 4, respectively. To
further understand each model’s estimation performance, we
calculated the root mean squared error (RMSE) and the mean ab-
solute error (MAE) of these four tree models on the test dataset
with 758 observations. The y; variable was the prediction.

(8)

1
MAE:EZ

Jj=1

Yj*JA/j

From Table 1, we can see that the RMSE decreased as the tree
size decreased, but the MAE increased as the tree size decreased.
Comparing Models 1 and 2, the RMSE decreased by 0.24% and the
MAE increased by 6.6%. Comparing Models 3 and 4, the RMSE
decreased by 0.77% and the MAE increased by 1.4%. Regarding the
changes in RMSE, since the errors were squared before they were
averaged, larger errors receive a relatively higher weight. This
means that the RMSE is more useful when significant errors are
particularly undesirable. However, the RMSE did not necessarily
increase with the variance of the errors. The RMSE increased with
the variance of the frequency distribution of error magnitudes Fig. 8
indicates the agreement level between the predicted data from the
four models and actual value in the validation tests. Based on the
information shown in Fig. 8 and Table 1, we can find the accuracy
level differences among the models were negligible in this work.
Both Models 1 and 2 had excellent prediction performances for VIS/
GHI, and Models 3 and 4 had outstanding prediction performances
for NIR/GHI. This offers the opportunity to simplify the computa-
tion process if the weather data are insufficient.

Table 1
Comparison of RMSE and MAE by model.
Regression Tree VIS/GHI NIR/GHI
Model 1 Model 2 Model 3 Model 4
Tree size 7 3 10 3
RMSE 0.0425 0.0424 0.0391 0.0388
MAE 0.0225 0.0241 0.0213 0.0216
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5. Workflow of model incorporation in solar architecture
design and analysis

The tree models developed were written via a programming
language to form an executable file that could then be used to
modify the weather file (e.g., TMY); the result was two new
weather files labeled Weather_VIS and Weather_NIR. Note that the
HMM data following the TMY weather file’s format was selected in
this study, but not necessarily to be the input file. As long as the
required input data are available in any typical weather files, the
decomposition computation can be processed. Table 2 summarizes
the required input variables for each model. In brief, Kt and Dew are
the two most important variables to determine both trees, and
adding the parameter, RH, may slightly increase the accuracy for the
models. Comparatively, to get the most accurate model for NIR/GHI,
some other parameters would be needed, such as Dry and T.

If the weather data variables were complete, Models 1 and 3
were adopted for Weather_VIS and Weather_NIR file generation,
respectively. If some variables were missing, the simpler models
(i.e., Models 2 and 4) were applied, as those variables are normally
available or computable in most standard weather files. For
instance, the cloud coverage data may not be recorded in some
weather files; then, Model 2, rather than Model 3, would be applied
to calculate the NIR. The input files do not have to be serially
complete or comprised of an entire year of 8760 h. A yearly file of
daylight hours, monthly file of daylight hours, or just a few hours of
data can be used for the computation. In the two files generated,
the original GHI data were replaced with the solar VIS and NIR
components calculated in each, which were based on the resultant
classification tree models and input of the original weather file.

Solar architecture designers can now use existing solar isolation
calculation engines embedded in design platforms, such as the
Solar Analysis plugin for Revit and Solar Exposure plugin for
Sketchup to calculate the solar insolation on building forms. These
new separate VIS and NIR solar analysis results will provide more
comprehensive and accurate quantities for designers during the
early design stage, guiding window placement, window-to-wall
ratios, and essential solar heat utilization or blockage. Fig. 9 pre-
sents a schematic diagram of this model and examples of applica-
tions. Window energy performance includes both optical and
thermal aspects. The optical aspect is correlated to VIS and de-
termines the indoor daylighting benefits and electrical lighting
energy savings, while the NIR plays an important role in the ther-
mal aspect, especially for transparent NIR reflecting, blocking, or
photovoltaic window products, determining the indoor heating
and cooling energy use or electric power generated [47]. As more
and more spectrally controllable independent building elements
emerge, such simulation ability will enable designers and engi-
neers to perform more accurate and comprehensive analyses at the
early design stage.

6. Conclusion

This work demonstrated the feasibility and excellent prediction
performance of regression tree models for hourly VIS/GHI and
NIR/GHI. The two-year solar spectra and TMY format-compliant
hourly weather data obtained from the SRRL BMS database of the
NREL Solar Radiation Research Laboratory were utilized for model
development. The solar spectra data, ranging from 300 nm to
1700 nm, was used in this study. After the data cleaning process,
based on the typical removal of missing and outlier values and
erroneous data upon physics-based calculations, the finalized
dataset included 7583 observations. To build a more generalizable
model for different locations, we intentionally incorporated ten
local meteorological parameters, such as humidity, temperature,
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Actual vs Predicted Box Plot of Model 1 for NIR/GHI
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Actual vs Predicted Box Plot of Model 2 for NIR/GHI
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Fig. 8. Actual vs. predicted value box plot of the four models.

Table 2

Required input variables.
VIS/GHI NIR/GHI
Model 1 Model 2 Model 3 Model 4
K¢, Dew, RH K¢, Dew K¢, Dew, RH, Dry, DHI, T.jq K¢, Dew

etc., into the modeling procedure. Based on the knowledge and
theory of solar radiation and building physics, we also developed
five new predictor parameters such as cloud transmittance T, that
can be derived by cloudiness values in typical weather files. In total,
15 predictor variables were used to build estimation models for
hourly VIS/GHI and NIR/GHI. This research yielded models capable
of converting the broadband solar irradiance data in weather files
into two separate solar components, VIS and NIR, for building en-
ergy and performance-related studies in which independent solar
spectra products are examined, such as analyses of spectrally se-
lective glazing, transparent photovoltaic panels, etc. Solar compo-
nents, especially NIR, are significantly affected by atmospheric
parameters, but those parameters are not very well documented
observationally and dependent on local geographic and climatic
features. In general, the clearness index K; and dew point tem-
perature Dew were the most important variables for clustering the
two fractions of VIS and NIR. Adding the new parameter T.; was
relatively effective in enhancing the model accuracy when it comes
to the NIR solar component. Additionally, the validation tests
indicated the MAE (2.13%—2.41%) and RMSE (3.88%—4.25%),
demonstrating the reliable performance of the classification tree
models developed. To briefly illustrate the importance of this study,
we can take the measured solar radiation data in 2019 in Boulder,
Denver, as an example. We can get the annual solar
resource,1.65 MWh/m [2], on a horizontal surface based on the
measured broadband solar data. If we take the simple fractions 40%
and 51% to represent the visible and infrared components [48],
respectively, we could get 0.66 MWh/m? annual solar energy in the
visible region and 0.84 MWh/m? annual solar energy in the infrared
region. However, applying the models developed in this work to the
broadband solar data can yield two very different numbers:
0.89 MWh/m? and 0.69 MWh/m? for solar visible and infrared
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energy, respectively. Such differences inform us of the potential
biases or errors in analyzing building energy performance when it
comes to spectrally selective materials or devices if we lack the data
of solar spectral components in our analysis.

The major contribution of this work is to provide an easy-of-use
tool that can transform the conventional weather files with
broadband solar data into the weather files with solar spectral
components. Furthermore, this transformation procedure does not
require costly solar spectral measurements but rather the typical
and readily accessible meteorological data. Combined with
computational solar analytic approaches in the current design and
engineering platforms, the clustering of solar visible and infrared
irradiance can provide a foundation for solar architecture design
and analysis. However, a variety of solar modeling algorithms (e.g.,
Perez model, Liu-Jordan model) used for calculating the incident
solar radiation on tilted or vertical building surfaces in different
solar building design and analysis programs. These embedded al-
gorithms determine how to retrieve and process the solar radiation
data (i.e., GHI, DHI, DNI) and other related weather data (e.g.,
cloudiness, dry bulb temperature) for computing the incident solar
radiation. Therefore, the question of how to fully utilize the solar
spectral weather data generated by the models in this work in
various design- and simulation-based programs has not been
addressed in this work. We plan to select several representative
programs in our future work and then carry out an in-depth
investigation of their inner solar analytic algorithms, incorporate
the solar spectral models, and finally validate the simulation results
compared with the actual solar spectral measurement data. Addi-
tionally, validation tests based on different locations and solar
spectra data will also be conducted in our future work to demon-
strate the generalizability of the present research.
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